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Abstract. Systems of ordinary differential equations (ODEs) are often
used to model the dynamics of complex biological pathways. We con-
struct a discrete state model as a probabilistic approximation of the ODE
dynamics by discretizing the value space and the time domain. We then
sample a representative set of trajectories and exploit the discretization
and the structure of the signaling pathway to encode these trajecto-
ries compactly as a dynamic Bayesian network. As a result, many inter-
esting pathway properties can be analyzed efficiently through standard
Bayesian inference techniques. We have tested our method on a model
of EGF-NGF signaling pathway [1] and the results are very promising in
terms of both accuracy and efficiency.

1 Introduction

Quantitative mathematical models are needed to understand the functioning of
complex biological systems. In particular they are needed to capture the dy-
namics of various intra (and inter)-cellular processes. Here we focus on signaling
pathways which typically sense extra-cellular or internal signals and in response,
activate a cascade of intra-cellular reactions. A multitude of signaling pathways
govern and coordinate the behavior of cells. As might be expected, many disease
processes arise from defects in signaling pathways. Thus the study of signaling
pathways via quantitative dynamic models is of critical importance.

A standard formalism used to model signaling pathways (and other bio-
pathways) is a system of Ordinary Differential Equations (ODEs); the equations
describe specific bio-chemical reactions while the variables typically represent
concentration levels of molecular species (genes, RNAs, proteins). This formalism
can be extended to include discrete aspects [2] and the techniques we develop
here can be adapted to such extensions as well.

Signaling pathways usually involve a large number of molecular species and
bio-chemical reactions. Hence the corresponding ODEs system will not admit
closed form solutions. Instead, one will have to resort to numerically generated
trajectories to study the dynamics. A second barrier is that the values of many
of the parameters (rate constants) associated with the ODEs will be unknown.
Even assuming all the parameters are known, the observables of the system will
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have very limited precision. Specifically, the initial concentration levels of the
various proteins and rate constants will often be available only as intervals of
values. Further, experimental data in the form of the measured concentration
levels of a few proteins at a small number of time points will also be available
only in terms of intervals of values. In addition, the data will often be gath-
ered using a population of cells. Consequently, when numerically simulating the
ODEs model, one must resort to Monte Carlo methods to ensure that sufficiently
many point values from the relevant intervals of values are being sampled. As a
result, analysis tasks such as model validation, parameter estimation and sensi-
tivity analysis will require the generation of a large number of trajectories. This
motivates our goal of probabilistically approximating the dynamics of ODEs via
discretizations.

We start with a system of ODEs and a prior distribution of the initial states.
Usually, this prior will consist of a uniform distribution over certain intervals
of values of the variables and the rate constants. We then fix a suitable dis-
cretization of the value and time domains. This is followed by sampling the
prior distribution of initial states to numerically pre-compute and store a rep-
resentative subset of trajectories induced by the ODEs dynamics. The key idea
is to exploit the dependencies/independecies in the pathway structure and the
discretization, to compactly encode these trajectories as a time-variant dynamic
Bayesian network [3]. The resulting approximation is called the Bayesian Dy-
namics Model (BDM). Since the trajectories are grouped together through the
discretization, our method bridges the mismatch between the accuracy of the
results obtained by ODE simulation and the limited precision of experimental
data used for model construction and verification. Secondly, the BDM represents
the global pathway dynamics more explicitly in the graph structure of the under-
lying dynamic Bayesian network (DBN). As a result, many interesting pathway
properties can be analyzed efficiently through standard Bayesian inference tech-
niques, instead of resorting to a large number of ODE simulations. There is a
one-time computational cost incurred to construct the BDM but this cost can
be amortized by performing multiple analysis tasks such as expected profiles
estimation, parameter estimation, sensitivity analysis etc. using the BDM. We
have tested our method on a model of EGF-NGF signaling pathway [1] and the
results obtained are very promising in terms of both accuracy and efficiency.

In terms of related work, a variety of qualitative and quantitative computa-
tional models have been proposed in the recent years to study bio-pathways [2, 4–
6]. Among the quantitative models, one usually distinguishes between population-
based models driven by stochastic simulations and ODEs based models driven
by -deterministic- numerical simulations. Clearly, both approaches are needed to
cover different contexts. Indeed, our work is, in spirit, related to the discretized
approximations presented in [7–9] that can be applied to high level modeling
formalism such as PEPA and PRISM. In these cited works, the dynamics of
a process-algebra-based description of the bio-pathway is given in terms of a
Continuous Time Markov Chain (CTMC) which is then discretized (using the
notion of levels) to ease analysis. Apart from the fact that our starting point is
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a system of ODEs, a crucial additional step we take is to exploit the structure
of the pathway to encode the dynamics more compactly as a dynamic Bayesian
network and perform analysis tasks directly on this representation. In a similar
vein, we feel that our model is a more compact discrete state model than than
the graphical model of a network of non-homogenous Markov processes studied
in [10]. We also believe that the techniques proposed in [11], as well as the verifi-
cation techniques reported in [12, 13] can be adapted to our setting. Interestingly,
there have been recent attempts to synthesize ODEs from PEPA model [14], the
motivation being that numerical simulations are faster than stochastic simula-
tions. We note however, in our setting, though BDM is a probabilistic graphical
model, we do not have to resort to stochastic simulations. The inferencing al-
gorithm we use (the so called Factored Frontier Algorithm [15]), in one sweep,
gathers information about the statistical properties of the family of trajectories
encoded by the BDM.

In the next section, we describe our method for constructing our BDM ap-
proximation. In section 3, we present a basic inferencing technique and methods
for performing tasks such as parameter estimation and global sensitivity analysis
using the BDM. We also simultaneously use a realistic signaling pathway model
to evaluate these techniques. In the final section, we summarize the paper and
discuss future work. The interested reader can find additional technical material
in the form an appendix and relevant supplementary material at [16].

2 The Bayesian Dynamics Model

Conceptually, our approximation technique consists of three steps:

1. We start with a system of ODEs; a discretization of the value space of
each variable and rate constant into a finite set of intervals; and a digi-
talization of the temporal domain of interest into a finite set of time points
{t0, t1, . . . , tmax}. We also assume a prior distribution of the initial values
(usually, a uniform distribution) over some of the intervals of the value space.
These initial values will define an uncountably infinite family of trajectories
TRAJideal, which in turn, via the discretization, will induce a Markov chain
MCideal.

2. It is impossible to compute MCideal explicitly. However, it can be approxi-
mated by sampling the set of initial values according to the prior and using
numerical integration to generate a representative subset TRAJapprox ⊆
TRAJideal of trajectories. Then, using the discretization and simple count-
ing, we can construct the Markov ChainMCapprox which will be an approx-
imation of MCideal.

3. However, MCapprox can be very large since the number of states that this
Markov chain will be, in the worst case, exponential in the number of vari-
ables. To get around this, we exploit the pathway structure (i.e. the way
the variables are coupled to each other in the system of ODEs) to repre-
sent MCapprox compactly as time-variant dynamic Bayesian network. This
representation ofMCapprox is called the Bayesian Dynamics Model (BDM).
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We emphasize that this three step procedure is just a conceptual framework;
we construct the BDM directly from the given system of ODEs. In what follows,
we describe the main technical ideas. The interested reader can find background
material and additional details in the appendix portion of the supplementary
material.

2.1 ODEs and Flows

We assume a set of ODEs ẋi(t) = fi(x(t),p) involving the continuous real-
valued variables {x1, x2, . . . , xn} and real-valued parameters {p1, p2, . . . , pm}.
In our setting, we will often be interested in studying the dynamics for different
combinations of values for the parameters. Hence it will be convenient to treat
them also as variables. However they will be time-invariant in the sense once
their values are fixed at t = 0, these values will not change through the passage
of time. Consequently, we will implicitly assume the given system of ODEs to be
augmented with m additional differential equations of the form ṗj(t) = 0 with
j ranging over {1, 2, . . . ,m}. In what follows, we will often let x, v range over
IRn

+, the values space of the variables and k range over IRm
+ , the values space of

the parameters and z range over IRn+m
+ , the combined values space.

In vector form, our system of ODEs may be then represented as Z′ = F (Z).
The ODEs will be mainly modeling mass action kinetics or variants such as
Michaelis-Menten kinetics. Hence we can assume F : IRn+m

+ → IRn+m
+ to be a C1

(continuously differentiable) function. Furthermore, the variables representing
the concentration level of a species within a single cell as well as the parameters
capturing the reaction rates will take values from a bounded interval. Hence the
domain of F can be restricted to a bounded region D of IRn+m

+ .
Given z0 = (v0,k) where v0 specifies the initial values of the variables and k

specifies the parameters values, the system of ODEs will have a unique solution
(due to F ∈ C1) [17]. We shall denote this solution by Z(t) with Z(0) = z0 and
Z′(t) = F (Z(t)).

It will be convenient to define the flow Φ : IR+ × D → D of Z′ = F (Z)
for arbitrary initial vectors z. It will be a C0 (continuous) function given by:
Φ(t, z) = Z(t) with Φ(0, z) = Z(0) = z and d

dt (Φ(t, z)) = F (Φ(t, z)) for all t.

2.2 The Markov Chain MCideal

Pathways models are usually validated by experimental data available only for a
few time points with the concentrations measured at the last time point typically
signifying the steady state value. Hence we assume the dynamics is of interest
only for discrete time points and that too only up to a maximal time point.
Consequently, we fix a time step ∆t > 0 and the time points of interest is
assumed to be the set {d ·∆t} with d ranging over {0, 1, . . . , d̂} where d̂ ·∆t is
the maximal time point of interest.

Next we assume that the values of the variables can be observed with only
finite precision and accordingly partition the range of each xi into Li intervals
[vmini , v1

i ), [v1
i , v

2
i ), . . . , [vLi−1

i , vmaxi ]. We denote this set of intervals as Ii. We also



Probabilistic Approximations of Signaling Pathway Dynamics 5

similarly discretize the range of each parameter pj into a set of intervals denoted
as In+j . The set I = {Ii}1≤i≤n ∪ {In+j}1≤j≤m is called the discretization.

As pointed out earlier, the initial values vector as well as the rate constants
(even when they are known) will be given not as point values but as distributions
(usually uniform) over the intervals defined by the discretization. We correspond-
ingly assume we are given a prior distribution in the form of a probability density
function Υ 0 capturing the distribution of initial values. For example, suppose we
are given that the initial values are uniformly distributed within a hypercube
Î1 × Î2 × . . .× În+m, where Îi ∈ Ii for each i. Let Îi = [li, ui) and ŵi = ui − li.
Then the corresponding prior probability density function Υ 0 will be given by:

Υ 0(z) =

{
1

ŵ1·ŵ2·...·ŵn+m
if z ∈ Î1 × Î2 × . . .× În+m,

0 otherwise.

The associated probability space we have in mind is (D,BD, P 0) where BD
is the Borel σ-algebra over D; the minimal σ-algebra containing the open sets
of D under the usual topology. P 0 is the probability distribution induced by Υ 0

and is given by:

P 0(B) =
∫
B
Υ 0(z)dz, for every B ∈ BD.

Further, TRAJideal = {Z(t)}t≥0 with Z(0) ∈ Î1 × Î2 × . . . × În+m is the
family of trajectories starting from all the possible points in this hypercube.
Since the flow is continuous and hence measurable we can associate a probability
distribution P t over BD for every t. To define this, let Φ−1

t (B) = {z′ | Φ(t, z′) ∈
B} for B ∈ BD. Since Φ(t, ·) is measurable, we have Φ−1

t (B) ∈ BD too. We can
now define P t as:

P t(B) = P 0(Φ−1
t (B)), for every B ∈ BD.

Let v be in the range of xi. We define [v] as the interval in which v falls. In
other words, [v] = I iff v ∈ I. Similarly, [k] = J if k ∈ J for a parameter value k
of pj with J ∈ In+j .

Lifting this notation to the vector setting, if z = (v1, v2, . . . , vn, k1, k2, . . . , km)
∈ IRn+m

+ , we define [z] = ([v1], [v2], . . . , [vn], [k1], . . . , [km]) and refer to it as a
discrete state. An MC-state is a pair (s, d), where s is a discrete state and
d ∈ {1, 2, . . . , d̂}.

We next define Pr(s, d) = P d·∆t({z | z ∈ I1 × I2 × . . . × In+m}), where
s = (I1, I2, . . . , In+m). We term the MC-state M to be feasible iff Pr(M) > 0.

The transition relation denoted as →, between MC-states is defined via:
M = (s, d) → M ′ = (s′, d′) iff d′ = d + 1 and both M and M ′ are feasible and
there exist z0, z, and z′ such that Φ(d ·∆t, z0) = z and Φ((d+ 1) ·∆t, z0) = z′.
Furthermore, [z] = s and [z′] = s′.

Let E, F denote, respectively, the event that the system is in the discrete
state s at time d · ∆t and in the discrete state s′ at time (d + 1) · ∆t for two
feasibleMC-states (s, d ·∆t) and (s′, (d+ 1) ·∆t). Let EF = E ∩F denote joint
event {z0 | Φ(d ·∆t, z0) ∈ s, Φ((d+ 1) ·∆t, z0) ∈ s′}. Consequently, we define the
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transition probability Pr((s, d)→ (s′, d′)) = Pr(F |E) = Pr(EF )/Pr(E). Since
Pr(E) > 0 this transition probability is well-defined.

Let M = {M1,M2, . . . ,Mn̂} be the set of M-states. We can now define
the Markov chain MCideal = (M, {pij}) with transition probabilities pij =
Pr(Mi →Mj) as above.

2.3 The Markov Chain MCapprox

MCideal can not be explicitly computed. Hence we sample z0 a sufficiently larger
number of times, say N , according to the prior distribution P 0 (we say more
about N below). For each sampled initial z0, we determine through numerical
integration theM-states [Φ(d·∆t, z0)], with d ranging over {0, 1, . . . , d̂}. We also
determine the transitions along this trajectory. Then through a simple counting
process involving these N trajectories, we compute a Markov chain that we refer
to as the MCapprox.

Since N is finite, there will be an error between the transition probabilities
(also theMC-state probabilities) computed usingMCapprox and the ones defined
byMCideal. By the central limit theorem [18], this error can be probabilistically
bounded. In other words, given an error bound ε and a confidence level c, we can
compute N , the number of samples required to get an error less than or equal
to ε with likelihood c (the Appendix gives more details). Further, this error will
tend to 0 with probability 1 as N tends to ∞. There will be an additional error
induced by the pth-order numerical integration method we use to compute the
N trajectories. This error will tend to 0 as ∆t tends to 0 or p tends to ∞.

However, the number of states of this Markov chain will be exponential in n
and hence for many signaling pathways MCapprox will be too large a structure.
Hence we shall construct a time-variant DBN called the BDM to compactly
represent MCapprox. We shall however compute the BDM directly from the N
sampled trajectories.

2.4 The BDM Representation

In what follows, we assume the basic background concerning Bayesian networks
and dynamic Bayesian networks [3]. The graphical structure of the DBN used for
our approximation can be derived from the differential equations. It will have n+
m random variables (corresponding to the variables and the parameters) as nodes
for each time slice d ·∆t with d ranging over {0, 1, . . . , d̂}. For convenience, we
will use the same name to denote a variable (parameter) and the corresponding
random variable. From the context it should be clear which role is intended.
The random variable xi (pj) can assume as values, the finite set of intervals Ii
(In+j).

The variable (parameter) xi (pj) in the time slice d ·∆t will be written as xdi
(pdj ). Edges connecting a node in the d-th slice to a node in the (d+1)-th slice will
be determined by the dependencies of the variables and the parameters in the
ODEs. Suppose zdl is a (variable or parameter) node in the d-th time slice and
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zd+1
q is a node in the next time slice. Then there will be an edge from zdl to zd+1

q

iff zl = zq or zq is a variable node and zl appears in the expression for żq in the
system of ODEs. As usual, the parents of the node zd+1

q will be the set of nodes
of the form zdl from which there is an edge into zd+1

q . Suppose, parents(xd+1
i ) =

{zd1 , . . . , zdl }. Then conditional probability table (CPT) associated with the node
xd+1
i will have entries of the form Pr(xd+1

i = I | zd1 = I1, . . . , zdl = I l) = h with
I ranging over Ii and Ik ranging over Ik and h ∈ [0, 1].

S + E
k1


k2
ES

k3−−→ E + P

dS

dt
= −k1 · S · E + k

′ · ES

dE

dt
= −k1 · S · E + (k2 + k3) · ES

dES

dt
= k1 · S · E − (k2 + k3) · ES

dP

dt
= k3 · ES

E E

ES

Sd

P

ES

S

P

d+1

d

d

d

d

d

d

d+1

d+1

d+1

d+1

d+1

d+1

k1

k2

k3

k1

k2

k3

Pr(P   = I |P = I’, ES  = I’’, k3= I’’’) = 0.7d+1 d d

I ,I’ Î IP
I’’   Î IES
I’’’   Î Ik3

M

M

Fig. 1. The ODE model of the enzyme-kinetic system and its BDM.

For instance, Figure 1 shows two adjacent slices of a enzyme-kinetic system.
In this BDM, the parent nodes of P d+1 are P d, ESd and kd3 . As mentioned
earlier, the parameters are assumed to not change their values during a run and
hence we denote kdi as simply ki and there will be no CPTs associated with
these nodes. As illustrated by the example, the connectivity between the nodes
in successive slices will remain invariant. However, due to the fact that the CPTs
associated with the nodes capture the transition probabilities ofMC-states, they
will be time variant.
MCapprox will have, in the worst case, O(d̂Kn) states and O((d̂ − 1)K2n)

transitions, where K is the maximum of |Ii| with 1 ≤ i ≤ n+m. In contrast, the
number of nodes in the BDM representation is O(d̂(n+m)) and the conditional
probability table associated each node will have at most O(KR+1) entries, where
R is the maximal number of parents a node can have. Usually, the reactants in
pathway models will be sparsely coupled to each other and hence R will be
much smaller than n. For instance, in the case study to be presented, n = 32
and R = 5. Even in cases where R is large, due to the nature of the ODEs we
deal with, we can often break up the corresponding node into nodes with smaller
fan-in degrees and thus reduce R [16].

To fill up the entries of the CPTs associated with the nodes we randomly
choose N combinations of initial values for the variables and the parameters
from their prior distribution as before. Note that if we want a coverage of J
samples per interval in an n+m dimensional vector of intervals we can achieve
N = JKR+1 instead of JKn+m by exploiting the network structure. We then
perform numerical integration to generate N trajectories and discretize those
trajectories by the predefined intervals and compute the conditional probabilities
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for each node by simple counting. For example, suppose α trajectories hit (P d =
I ′, ESd = I ′′, k3 = I ′′′) and β of them in turn hit (P d+1 = I), then Pr(P d+1 =
I|P d = I ′, ESd = I ′′, k3 = I ′′′) = β

α .
Further, the MCapprox can be easily recovered from this DBN [19]. In this

sense, our BDM representation is a principled probabilistic approximation of
the dynamics induced by the system of ODEs. Various optimizations can be
developed to reduce the practical complexity of the BDM construction. The
details can be found in [16].

Though the construction of the BDM involves significant computational ef-
fort, it is a one time cost. Moreover, a substantial portion of the computation
can be executed in parallel. Further, once the BDM has been constructed, many
of the analysis tasks can be performed very efficiently and the one time cost of
constructing the BDM can be easily amortized. We present some experimental
results in support of this in the next section.

3 Analysis

We now present some of the analysis techniques that we have developed so far
for the BDM representation. These techniques are based on the basic Bayesian
inference method called the FF (Factored Frontier) algorithm [15] and can be
used to answer elementary probabilistic queries as well for performing parameter
(rate constants) estimation and sensitivity analysis. Our goal here is not to
develop new algorithms to solve these problems. Rather, we wish to demonstrate
how standard techniques for tackling these problems can be adapted to BDM
framework in a straightforward manner. We validate our techniques using a
relatively large signaling pathway and show the relevant experimental results
along with our techniques.

3.1 The EGF-NGF signaling pathway and its BDM

PC12 cells are a valuable model system in neuroscience. They proliferate in
response to EGF stimulation but differentiate into sympathetic neurons in re-
sponse to NGF. This interesting phenomenon has been intensively studied [20].
It has been reported that the signal specificity is correlated with different Erk
dynamics. Specifically, a transient activation of Erk1/2 has been associated with
cell proliferation, while a sustained activity has been linked to differentiation.
How EGF and NGF affect the dynamics of active Erk through a network of
intermediate signaling proteins is shown schematically in Figure 2.

This model not only includes a common pathway to Erk through Ras shared
by both the EGFR and NGFR, but also includes two important side branches
through PI3K and C3G, which introduce multiple feedback loops thus complicat-
ing the dynamics. The ODE model of this pathway is available in the BioModels
database3. It consists of 32 differential equations and 48 associated rate param-
eters (estimated from multiple sets of experimental data).
3 http://www.ebi.ac.uk/biomodels/



Probabilistic Approximations of Signaling Pathway Dynamics 9

EGFfreeEGFR

boundEGFR

Sos Sos*

Ras Ras*
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Mek Mek*

Erk Erk*
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Akt Akt*

p90RSK* p90RSK
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B-Raf B-Raf*

NGF freeNGFR

boundNGFR

RasGap RafPP
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. . . . . .
d[ f reeEGF R ]

dt = 0 .0121008× [boundEGF R]

0.0000218503×[ EGF ] × [ f reeEGF R ]
d[boundEGF R]

dt = 0 .0000218503×[ EGF ] × [ f reeEGF R ]

0.0121008 ×[boundEGF R ]
d[Sos]

dt = 1611.97× [P90Rsk* ] × [Sos]
[Sos] + 896896

694.731× [boundEGF R ] × [Sos]
[Sos] + 6086070

389.428 × [boundNGF R ] × [Sos]
[Sos] + 211.266

d[Sos*]
dt = 694.731× [boundEGF R ] × [Sos]

[Sos] + 6086070

+ 389.428× [boundNGF R ] × [Sos]
[Sos] + 211.266

1611.97× [P90Rsk* ] × [Sos]
[Sos] + 896896

. . . . . .

Membrane

Fig. 2. EGF-NGF pathway [1]

To construct the BDM, we first derived its graph from its ODEs. We then
discretized the ranges of each variable and parameter into 5 equal-size intervals
and fixed the time step ∆t to be 1 minute. Our experimental data (western
blot) is such that 5 uniform intervals seems an appropriate choice. However our
construction can be easily extended to non-uniform values intervals and time
points. To fill up the conditional probability tables associated with the nodes,
3×106 trajectories were generated up to 100 mins by sampling initial states and
parameters from the prior which are assumed to be uniform distributions over
certain intervals (see [16]). The computational workload was distributed on 10
Opteron 2.2GHz processors in a cluster. It took around 4 hours to construct the
BDM. All the subsequent experiments reported below were done using an Intel
Xeon 2.8GHz processor.

3.2 Probabilistic Inference

As pointed out earlier, although the dynamics defined by the ODEs is deter-
ministic, to answer a basic query such as “what will be the concentration of the
protein xi at time t?” one will have to numerically generate a representative
sample of trajectories and compute the average of the values for xi at t yielded
by the individual trajectories.

Using our BDM approximation, we can answer such a basic query and other
more sophisticated queries by Bayesian inference. Specifically, given a Bayesian
network, some observed evidence and some knowledge about the distribution
of values of a set of variables, Bayesian inference aims to compute posterior
distribution for a set of query variables. In our setting, the observed evidence
refers to the initial conditions, known parameters, and experimental data. Query
variables potentially refer to all the random variables in the BDM. We adopt the
approximate algorithm known as the Factored Frontier (FF) algorithm [15]. It
approximates joint distributions over each time point as a product of marginal
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Fig. 3. Simulation results of EGF-NGF signaling pathway. Solid lines represent nomi-
nal profiles and dash lines represent BDM simulation profiles.

distributions and computes the posterior distribution according to:

Pr(xdi |D) =
∑
I

(Pr(xdi |Pa(xdi ) = I)
∏

u∈Pa(xd
i )

Pr(u|D)). (1)

Here Pr(u|D) are the marginal distributions over the parents, D is the evidence,
and Pa(xi) denotes the parents of xi. The implementation of FF is straightfor-
ward. By storing Pr(xdi |Pa(xdi )) in the conditional probability tables and prop-
agating Pr(u|D) to the next time point, we can use equation 1 to compute
Pr(xdi |D). The time complexity of this algorithm is O(d̂(n+m)KR+1), where K
is the maximal number of intervals associated with a variable or rate constant’s
value domain. Further, R is the maximal number of parents a node can have.

Using this algorithm, and with some additional simple computations, many
queries can be answered. For instance, we identify each interval I = [l, u) in I
with its mid-point l+u

2 . Then after inferring the probability distribution of xi
over intervals, the expected value E(xdi ) at a time slice d can be computed and
used to validate the model by comparing it with the cell population based data
that may be available for xi at d ·∆t.

To test the quality of our approximation, we implemented Monte Carlo inte-
gration for the ODE model to get good estimates by sampling. Specifically, we
numerically generated a number of random trajectories -according to the prior-
using ODEs, discretized them and computed the average values of the variables
at the chosen time points. Our experiments show that the average values con-
verge when the number of random trajectories generated is roughly 104. The
averaged trajectories projected to individual protein concentration time series
values are termed to be the nominal simulation profiles. Using the implemented
FF algorithm, the mean of each variable over time was computed. The resulting
time profiles are termed to be the BDM-simulation profiles. As summarized in
Figure 3, our BDM-simulation profiles fit the nominal simulation profiles quite
well for most of the cases.

In terms of running time, a single execution of FF inference requires 0.29
seconds while generating a stable nominal profile requires 386.4 seconds. Thus,
the total computation time will be sharply reduced by our approach when many
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such “queries” need to be answered. In the next subsection, we will further
demonstrate this advantage by carrying out a simulation-intensive analysis task.

3.3 Parameter estimation.

Lack of knowledge about the parameters and hence the need to perform param-
eter estimation using limited data has long been identified as a major bottleneck
of pathway modeling. Current approaches to parameter estimation formulate
it as a non-linear optimization problem [21]. A typical procedure will involve
searching in a high dimensional solution space, in which each point represents a
vector of parameter values. Whether a point is good or not is measured by the
objective function, which will capture the difference between experimental data
and prediction generated by simulations using the corresponding parameters.

For a large pathway model, one often needs to evaluate a very large number of
solution points involving a numerical integration for each evaluation. This makes
the whole process computationally intensive. The BDM representation allows us
to carry out the search for good parameter values in a hierarchical manner. Due
to the discretized nature of the BDM, the solution space is transformed to a
rectilinear grid consisting of a space-filling tessellation by hyperrectangles that
we call blocks. An important observation is that kinetic parameters are often
robust [22]. In other words, the points around the best solution in the search
space will also have relatively small objective values. Thus, instead of searching
point by point in the solution space, we can first search for a few promising blocks
and then take a closer look within these small blocks. Therefore, the general
scheme of our “grid search” algorithm will consist of two phases: (1) identify
good blocks, (2) do local search within candidate blocks. We note that phase(2)
is necessary only when we aim to estimate parameters with finer granularity than
the granularity of the BDM’s discretization. Otherwise, one can skip phase(2)
and return a probabilistic estimate (typically a Maximal Likelihood Estimate)
of a combination of intervals of parameter values. For executing phase(1), we
can apply any standard search algorithms over the discretized search space. As
the discretized search space is much smaller than the original one, simple direct
search algorithm such as Hooke & Jeeves’s search [23] can be adopted and the
overall search process will only require a small number of executions of the FF
algorithm.

In order to test the performance of the BDM-based parameter estimation
method, we synthesized experimental time series data for 9 (out of 32) proteins
{bounded EGFR, bounded NGFR, active Sos, active C3G, active Akt, active
p90RSK, active Erk, active Mek, active PI3K}, measured at the time points
{2, 5, 10, 20, 30, 40, 50, 60, 80, 100} (min).This data was synthesized using
prior knowledge about initial conditions and parameters [16]. To mimic western
blot data which is cell population based, we first averaged 104 random trajec-
tories generated by sampling initial states and rate constants, and then added
observation noise with variance 5% to the simulated values. With the assumed
measurement precision, those values were discretized into 5 intervals, which rep-
resent the concentration levels in western blot data. We reserved the data of 7
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Fig. 4. Parameter estimation results. (a) BDM-simulation profiles vs. training data.
(b) BDM-simulation profiles vs. test data.

proteins for training the parameters and reserved the rest data for testing the
quality of the estimated parameter values.

Assuming that 20 of the 48 parameter values are unknown, a modified version
of Hooke & Jeeves algorithm was implemented to search for in the discretized
parameter space. The parameters obtained can be found in [16]. As shown in
Figure 4, the BDM-simulation profiles generated using the estimated parameters
obtained (with the match to training data as shown) has good agreement with
the test data.

We compared the efficiency and quality of our results with the following
ODEs based optimization algorithms: Levenberg-Marquardt (LM), Genetic Al-
gorithm (GA), Stochastic Ranking Evolutionary Strategy (SRES), and Particle
Swarm Optimization (PSO). These optimization algorithms were executed us-
ing the COPASI [24] tool. We scored the resulting parameters obtained from
all the algorithms using the weighted sum-of-squares difference between the ex-
perimental data and the corresponding simulation profiles (i.e. low scores cor-
respond to low errors). The results are summarized in Figure 5, which suggests
that our method achieves a good balance between accuracy and performance.
We also note that the cost of constructing the BDM representation gets rapidly
amortized. In fact the savings become even more significant when we perform
additional analysis tasks such as sensitivity analysis.
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Fig. 5. Performance comparison of our parameter estimation method (BDM) and 4
other methods.
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3.4 Global sensitivity analysis.

Sensitivity analysis has been used to identify the critical parameters in signal
transduction. To overcome the limitations of traditional local sensitivity analy-
sis methods global methods have been proposed recently, e.g. multi-parametric
sensitivity analysis (MPSA) [25]. The MPSA procedure consists of: (1) draw sam-
ples from parameter space and for each combination of parameters, compute the
weighted sum of squared error between experimental data and predictions gen-
erated by selected parameters; (2) classify the sampled parameter sets into two
classes (good and bad) using a threshold error value; (3) plot the cumulative fre-
quency of the parameter values associated with the two classes; (4) evaluate the
sensitivities as the Kolmogorov-Smirnov statistic of cumulative frequency curves.
To improve this process, [25] adopts Latin hypercube sampling (LHS) since it
requires fewer samples while guaranteeing that individual parameter ranges are
evenly covered. In our BDM setting, MPSA can be done in a similar manner
using LHS since the parameter space is discretized into blocks. In addition, the
number of samples used to reach convergence is reduced since we can quickly
evaluate the whole block instead of having to draw samples from a block.

We modified and implemented the MPSA method for the BDM. Using the
same experimental data set introduced in previous subsection, the global sensi-
tivities (K-S statistics) of the parameters were computed. The results are shown
in Figure 6. The cumulative frequency distributions for the acceptable and un-
acceptable cases of the rate constants can be found in [16]. Specifically, the
reactions involved in the phosphorylation of Erk (k23), Mek (k17), Akt (k34) and
p90RSK (k28) have the highest sensitivities, indicating that these reactions af-
fect the system behavior most directly. These results are consistent with previous
findings [20].
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Fig. 6. Parameter sensitivities

The MPSA method adopts Monte Carlo strategy for the ODE model. We
recorded the running time of the algorithm till the K-S values converged. The
total running time of the ODEs based MPSA method was about 22 hours, while
the MPSA method based on the BDM required only 34 minutes.
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4 Discussion

We have proposed a probabilistic approximation scheme for signaling pathway
dynamics specified as a system of ODEs. Given a discretization and an initial
distribution, it consists of pre-computing and storing a representative sample
of trajectories induced by the system of ODEs. We use a dynamic Bayesian
network representation, called the Bayesian Dynamics Model, to compactly rep-
resent these trajectories by exploiting the pathway structure. Basically, the un-
derlying graph of the BDM captures the dependencies of the variables on other
variables and rate constants as defined by the system of ODEs. Due to the prob-
abilistic graphical representation, a variety of analysis questions concerning the
pathway dynamics traditionally addressed using Monte Carlo simulations can
be converted to Bayesian inference and solved more efficiently. Using the FF
algorithm for doing basic Bayesian inference, we have adapted standard param-
eter estimation and sensitivity analysis algorithms to the BDM setting. We have
demonstrated the applicability of our techniques with the help of the good sized
EGF-NGF signaling pathway.

A number of further lines of work suggest themselves. Firstly, we need to
apply our method to a variety of pathway models. We are currently doing so
in collaboration with biologists. Secondly, it will be useful to augment the ODE
model with some discrete features but this should be easy to achieve. A more
challenging issue is to abstract the BDM representation to an input-output trans-
ducer so that one can efficiently model networks of pathways and inter-cellular
interactions models. Finally, it will be important to develop formal verification
techniques based on the BDM representation. In this context, it is worth noting
that the FF algorithm can compute the marginal probabilities of the discretized
values of variables at specific time points. Hence a good starting point will be to
develop probabilistic bounded model checking methods for specifications based
on the BDM model.
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