
Partially Observable Markov Decision Process
(POMDP) Technologies for Sign Language based

Human-Computer Interaction

Sylvie C.W. Ong, David Hsu, Wee Sun Lee, Hanna Kurniawati

School of Computing, National University of Singapore, Computing 1,
13 Computing Drive, Singapore 117417

{song, dyhsu,leews, hannakur}@comp.nus.edu.sg

Abstract. Sign language (SL) recognition modules in human-computer
interaction systems need to be both fast and reliable. In cases where multiple
sets of features are extracted from the SL data, the recognition system can speed
up processing by taking only a subset of extracted features as its input.
However, this should not be realised at the expense of a drop in recognition
accuracy. By training different recognizers for different subsets of features, we
can formulate the problem as the task of planning the sequence of recognizer
actions to apply to SL data, while accounting for the trade-off between
recognition speed and accuracy. Partially observable Markov decision processes
(POMDPs) provide a principled mathematical framework for such planning
problems. A POMDP explicitly models the probabilities of observing various
outputs from the individual recognizers and thus maintains a probability
distribution (or belief) over the set of possible SL input sentences. It then
computes a policy that maps every belief to an action. This allows the system to
select actions in real-time during online policy execution, adapting its
behaviour according to the observations encountered. We illustrate the POMDP
approach with a simple sentence recognition problem and show in experiments
the advantages of this approach over “fixed action” systems that do not adapt
their behaviour in real-time.

Keywords: Sign language recognition, human-computer interaction, planning
under uncertainty.

1 Introduction

Ensuring that information technology products and services are accessible to the deaf
requires human-computer interaction systems that perform tasks in response to user
commands and requests presented in the form of sign language (SL) input. An
important requirement for such a system to act correctly is reliable recognition of the
SL input. At the same time, due to the real-time nature of the interactions, the
recognition process must also be fast.

In general, SL expression involves the hands, facial expression, head movement
and body posture. Thus SL recognition systems which extract multiple features from

dyhsu
Text Box
IN Proc. Int. Conf. on Human-Computer Interaction, 2009

the hands, face and body, and use these features as input to recognizers have been
built in recent years (for e.g., [1]). While possibly providing better recognition
accuracy, executing recognizers with multiple input features may be more time-
consuming than executing recognizers with fewer input features. Conversely, not all
of the features extracted from a SL expression are necessary in all circumstances for
disambiguating signs. For example, some signs may be easily disambiguated with just
the features from the dominant hand, without the need for features of the non-
dominant hand and facial expression. Ideally, a SL recognition system operating
under time constraints would process only as many of the extracted features as are
necessary to reliably recognize the SL input. We can think of the system as having
access to a set of recognizers, each recognizer taking a different set of extracted
features as its input. The system’s task is to sequentially (and selectively) apply the
available recognizers to the SL input, until it is sufficiently confident of its
interpretation. At this point it submits its interpretation of the SL input as the final
recognition result.

The task of deciding which recognizers to apply in sequence and when to submit
the final recognition result can be formulated as a planning problem for an intelligent
agent where the agent’s observations are the output of the available recognizers. Since
these outputs are generally not a hundred percent accurate, the agent will always have
a degree of uncertainty about its interpretation of the SL input. At the same time, the
agent must take into account the trade-off between the computational cost (time) of
applying the available recognizers and the confidence level of the recognition result it
finally submits. We propose to formulate this planning problem as a partially
observable Markov decision process (POMDP) which explicitly models both the
agent’s uncertainty and the desired trade-off.

POMDP is a powerful framework for planning under uncertainty [2]. It has a solid
mathematical foundation, and has been applied to human-computer interaction
applications such as spoken dialogue systems [3]. The most closely related work to
ours is [4] where visual operators are (repeatedly) applied to find the color or shape of
objects in a scene. Our work differs in that SL input data is sequential and dynamic in
nature – we cannot repeatedly acquire data and apply the same recognizer to the same
sentence utterance, unlike in [4], where a visual operator can repeatedly acquire data
from the same static scene. In our input data, signs appear sequentially in a sentence,
hence any information we have about the sentence model can be advantageously used
when determining the final recognition result.

In the next section we give a short background on POMDPs, followed by a
presentation of our proposed model in Section 3.

2 POMDPs

A POMDP models an agent taking a sequence of actions under uncertainty to achieve
a goal. Formally a POMDP is specified as a tuple (S, A, O, T, Z, R), where S is a set of
states, A is a set of actions, and O is a set of observations. In each time step, the agent
lies in some state s in S; it takes some action a in A and moves from s to a new state
s’. Due to the uncertainty in action, the end state s’ is modeled as a conditional

probability function T(s, a, s’) = p(s’ | s, a), which gives the probability that the agent
transits to s’, after taking action a from state s. The agent then makes an observation
to gather information on its state. Due to the uncertainty in observation, the
observation result o in O is also modeled as a conditional probability function Z(s, a,
o) = p(o | s, a). In each step, the agent receives a real-value reward R(s,a), if it takes
action a from state s, and the agent’s goal is to maximize its expected total reward by
choosing a suitable sequence of actions. We control the agent’s behavior by defining
a suitable reward function.

For a POMDP, planning means computing an optimal policy that maximizes the
expected total reward. Since the agent’s state is partially observable and not known
exactly, we rely on the concept of a belief b, which is a probability distribution over S.
A POMDP policy π maps a belief b to a prescribed action a in A. Policy computation
is usually performed offline.

Given a policy, the control of the agent’s actions (i.e., policy execution) is
performed online in real time. It consists of two steps executed repeatedly. The first
step is action selection based on the policy π. The second step is belief estimation.
After the agent takes an action a and receives an observation o, its new belief b’ is
given by

b’(s’) = k Z(s’, a, o) ΣsT(s, a, s’) b(s),

where k is a normalizing constant. The process then repeats.

3 Problem Formulation

As an illustration of how SL recognition in human-computer interaction systems can
be formulated as a POMDP, we present a problem where the SL input consists of 2-
word sentences made up of signs from a vocabulary of 3 signs: {sign-0, sign-1, sign-
2}. We denote the word1 positions in each sentence as position-a (first word) and
position-b (second word). The sentences have been explicitly segmented into
individual words (for example, by using the approach in [5]), and the features of the
dominant and non-dominant hands have been extracted2. The system has available to
it a single-hand recognizer which takes features from the dominant hand as its input;
and a double-hand recognizer which takes features from both the dominant and non-
dominant hands as its input. The recognizers are assumed to have been previously
trained on representative data such that when presented with new (previously unseen)
data, each recognizer will output one of the signs in the vocabulary as its recognition
result.

The recognizer actions available to the system are:
1) apply_ag: apply the single-hand recognizer to the the word at position-a,
2) apply_ad: apply the double-hand recognizer to the the word at position-a,

1 We use the terms word and sign interchangeably in this paper.
2 Our focus is on planning the steps for applying existing recognizers to input data, and not on

designing/training the individual recognizers. Hence, we abstract over details about the
method of data acquisition, and feature extraction/selection.

3) apply_bg: apply the single-hand recognizer to the the word at position-b,
4) apply_bd: apply the double-hand recognizer to the the word at position-b.
The system submits its final recognition result by executing actions:
1) submit_a0: submit sign-0 as the recognized sign at position-a;
2) submit_a1: submit sign-1 as the recognized sign at position-a;
3) submit_a2: submit sign-2 as the recognized sign at position-a;
4) submit_b0: submit sign-0 as the recognized sign at position-b;
5) submit_b1: submit sign-1 as the recognized sign at position-b;
6) submit_b2: submit sign-2 as the recognized sign at position-b.

Once the sign id at both word positions have been submitted, the system is considered
to have submitted its final recognition result for the SL input.

Below we describe the parameters in the POMDP tuple, (S, A, O, T, Z, R), for
modeling the problem above.
• S : Ss × Sag × Sad × Sbg × Sbd × Sat × Sbt , the set of states, is a cross product of seven

subspaces. The overall state s can be denoted as ss sag sad sbg sbd sat sbt.

Ss : {sxy; x in {0,1,2}, y in {0,1,2}} represents the sign ids in the sentence, where
sxy denotes sign-x in position-a and sign-y in position-b. In general, given a
vocabulary of size Nv and sentences of length Ns, not all (Nv)Ns combinations of
sign sequences are valid sentences in the language. The POMDP model should
reflect this by having |Ss| < 32. The set Ss of valid sentences constitutes the sentence
model for the SL recognition task.

Sag : {fag, tag}, Sad : {fad, tad}, Sbg : {fbg, tbg}, Sbd : {fbd, tbd} are indicators which
represent whether the agent has applied the available recognizers to the words in
the sentence. sag = fag (i.e. false) indicates that the single-hand recognizer has not
been applied to the word at position-a. sag = tag (i.e. true) indicates that it has.
Similarly, sad = fad/tad indicates whether the double-hand recognizer has been
applied at position-a. sbg = fbg/tbg and sbd = fbd/tbd , respectively, indicate whether the
single and double-hand recognizers have been applied to the word at position-b.

Sat : {fat, tat}, Sbt : {fbt, tbt} are indicators which represent whether the agent has
submitted the sign ids in the sentence. sat = fat/tat indicates whether the agent has
submitted the sign id at position-a. sbt = fbt/tbt indicates whether the agent has
submitted the sign id at position-b.

• A : {submit_a0, submit_a1, submit_a2, submit_b0, submit_b1, submit_b2,
apply_ag, apply_ad, apply_bg, apply_bd} is the set of actions. Executing any of
the three submit_a actions leads to sat being set to tat. Executing any of the three
submit_b actions leads to sbt being set to tbt. Action apply_ag leads to sag being set
to tag

 . Similarly for apply_ad and sad. Actions apply_bg and apply_bd have
analogous effects on sbg and sbd, respectively.

• O : {o0, o1, o2} is the set of observations, i.e. the outputs of the recognizers.

• T : S × A × S → [0, 1] is the state transition function. This function reflects the fact

that all of the actions have no effect on the state ss of the subspace Ss since the sign

ids in a sentence do not change as a result of the agent’s actions. The indicator
states, sag , sad , sbg , sbd , sat and sbt, are set to true when the corresponding actions
are taken, as described above. Once set to true, an indicator remains as true.

• Z : S × A × O → [0, 1] is the observation function. For actions apply_ag, apply_ad,

apply_bg and apply_bd, the function reflects the accuracy of the single-hand and
double-hand recognizers (refer to Section 4.1 for details). For submit actions, the
observation function is set to a uniform distribution.

• R : S × A → real-valued rewards.

The goal of the overall recognition system is to correctly recognize the words in
the sentence. Hence, the reward function assigns a positive (negative) reward to the
agent when it submits the right (wrong) sign ids. However, the agent is not allowed
to submit the sign id at the same word position more than once. To enforce this, a
very large penalty is set in the reward function for repeat submissions. The exact
value of the penalty is not critical – setting it a few magnitudes bigger than the
reward given for correct/incorrect sign id submission is quite sufficient. The
reward function for submit_a0 is shown below, the functions for submit_a1,
submit_a2, submit_b0, submit_b1 and submit_b2 are analogous.

R(s, submit_a0) = +/-10α ; for all s where sat is fat
R(s, submit_a0) = -10000 ; for all s where sat is tat

For actions that apply recognizers to words in the sentence, the reward values
reflect the computational cost (time) of the recognizers. Here, we make a
simplifying assumption by setting the cost of applying the double-hand recognizer
to twice that of the single-hand recognizer. This is a reasonable assumption when
there are twice as many features to process in the double-hand recognizer.

R(s, apply_ag) = -1 ; for all s where sag is fag
R(s, apply_bg) = -1 ; for all s where sbg is fbg
R(s, apply_ad) = -2 ; for all s where sad is fad
R(s, apply_bd) = -2 ; for all s where sbd is fbd

Applying a recognizer multiple times to the same word position violates the
POMDP assumption that observations are independent. (The features from the
word remain the same in each application, hence the recognizer outputs would be
identical). To prevent a recognizer from being applied more than once to each
word position, a very large penalty is set in the reward function.

 R(s, apply_ag) = -10000 ; for all s where sag is tag
 R(s, apply_bg) = -10000 ; for all s where sbg is tbg
R(s, apply_ad) = -10000; for all s where sad is tad

 R(s, apply_bd) = -10000 ; for all s where sbd is tbd

The parameter α in the reward function for submit actions allows a trade-off
between the computational cost of applying recognizers and the confidence level
when submitting the sign ids.

4 Experimental Setup and Results

In this section, we describe the experiment setup and results on the POMDP model.
The sentence model and observation function for the POMDP are defined in Section
4.1. Sentence recognition results and some example sequences of agent actions during
policy execution are presented in the following sections.

4.1 POMDP Parameters

The experiments below are a preliminary investigation into the feasibility of using
POMDPs for SL input recognition. As such, the experiments are simulations of how
such a POMDP would perform with real-world data. Below we describe how the
sentence model and observation function were defined for the simulation experiments,
as well as how they could be learned from data when applied to real-world tasks.

Sentence Model. For a particular recognition task, the set of states of the subspace Ss
should be defined to be the set of valid sentences that can occur with the given
vocabulary. For the experiments below, we randomly chose 5 sentences from a total
of 9 possible combinations of 2-word sentences : {s00, s10, s21, s02, s12}.
(Admittedly, 2-word sentences consisting of the same sign repeated twice (as in s00)
are rare, however this does occur in longer sentences, hence we didn’t constrain the
sentences to exclude repeated signs.)

Observation Function. For a particular recognition task, the observation function
should reflect the accuracy of the available recognizers. This can be obtained from
supervised training by presenting multiple instances of each sign in the vocabulary to
each recognizer and estimating the probability of its outputs. For the experiments
below, we set some reasonable values for the accuracy of the single-hand and double-
hand recognizers, as shown in Table 1. We assumed that sign-0 and sign-1 are signs
made with the dominant hand only while sign-2 is made with both hands. Hence
when the sign is sign-0 or sign-1, the single-hand recognizer outputs the correct result
with a higher probability as compared to the double-hand recognizer. The opposite is
true for sign-2.

Table 1. Sign accuracy of single-hand and double-hand recognizers.

Probability of single-hand recognizer output Actual sign
sign-0 sign-1 sign-2

sign-0 0.818 0.091 0.091
sign-1 0.091 0.818 0.091
sign-2 0.1 0.1 0.8

Probability of double-hand recognizer output Actual sign
sign-0 sign-1 sign-2

sign-0 0.727 0.182 0.091
sign-1 0.182 0.727 0.091
sign-2 0.091 0.091 0.818

The observation functions for the POMDP were set according to the values in

Table 1. For example,

Z(ss= s02, a = apply_ag, o = (sign-0,sign-0,sign-2)) =
p(o = (sign-0,sign-1,sign-2) | ss= s02, a = apply_ag) = (0.818, 0.091, 0.091).

Note that the recognizer accuracy is not affected by which word position it is

applied at, hence,

Z(ss= s10, a = apply_bg, o = (sign-0,sign-0,sign-2)) =

 p(o = (sign-0,sign-1,sign-2) | ss= s10, a = apply_bg) = (0.818, 0.091, 0.091).

4.2 Results

Experiments were performed on a PC with a 2.66GHz Intel processor and 2GB
memory. A POMDP model was specified as described in Section 3 and Section 4.1,
and with the parameter α in the reward function set to 10. We first ran the APPL
solver [6] which implements SARSOP [7], a leading POMDP algorithm, on the
model. We then ran a total of 5 ×106 simulation trials, to measure the performance of
the solver’s output policy. In each trial, the actual sentence is simulated with equal
probability for each of the sentences in the set Ss. The outputs from the single-hand
and double-hand recognizers are simulated with probabilities in accordance with
Table 1. The actual sentence is not known to the agent executing the policy, only the
recognizer outputs are observed.

The average sign accuracy obtained from the trials is 88% and average sentence
accuracy 80% (Table 2). The average cost of applying the recognizers in each trial is
4.53.

Table 2. Overall sign and sentence recognition accuracy.

 POMDP model Single-hand-
recognizer-only

Double-hand-
recognizer-only

Av. sign accuracy 88% 87% 83%
Av.sent. accuracy 80% 75% 68%
Cost of applying
recognizers

4.53 2 4

As a baseline comparison, we estimated (based on the probability values from

Table 1) the overall sign and sentence accuracy for a system which uses only one of
the two available recognizers. For a system which uses the single-hand recognizer
only and assumes that its output is always correct, it would, for example, correctly

recognize the sentence s02, 65.4% of the time (0.654 = 0.818 × 0.80 = p(o = sign-0 |
ss= s02, a = apply_ag) × p(o = sign-2 | ss= s02, a = apply_bg)).

We made adjustments to the probability values from Table 1 by taking into account
the sentence model (this increases the calculated recognition rate since the model
restricts the possible sequences of signs that could appear) and obtained the
(estimated) overall accuracy rates for a single-hand-recognizer-only system. Similar
calculations were made to estimate overall accuracy rates for a double-hand-
recognizer-only system, as shown in Table 2.

The average cost (4.53) of applying recognizers in the POMDP model indicates
that the policy selectively applies the available recognizers in the recognition task. It
does not blindly apply both recognizers to each of the word positions in the sentence
(which would entail a cost of 6), nor does it apply either only the single-hand or the
double-hand recognizers. It achieves a higher recognition rate than both the single-
hand-recognizer-only and the double-hand-recognizer-only systems with a slightly
higher cost than both systems.

Note that we did not make a comparison with the recognition accuracy of a system
that always uses both the available recognizers. Evidently, such a system would give a
higher recognition accuracy. However, our goal is to ellicit a system that acts
intelligently in applying recognizers when there is insufficient time to apply all the
available recognizers at every word position, for every SL input. In the next section,
we examine some examples of policy execution in the simulation trials to see how the
POMDP selectively applies recognizers.

4.3 Examples of Policy Execution

Tables 3 and 4 show two examples of policy execution during the simulation trials. In
terms of time steps, the tables should be read from left to right and from top to
bottom.

Table 3. Policy execution example 1: actual sentence is s02, sentence recognized successfully.

Time Belief over Ss Action Obs.
0 (0.2, 0.2, 0.2, 0.2, 0.2) apply_bg o2
1 (0.049, 0.049, 0.049, 0.427, 0.427) apply_bd o2
2 (0.006, 0.006, 0.006, 0.491, 0.491) submit_b2 -
3 (0.006, 0.006, 0.006, 0.491, 0.491) apply_ag o0
4 (0.011, 0.001, 0.001, 0.888, 0.099) submit_a0 -

In example 1 (Table 3), the system starts with equiprobable belief over the set of

possible sentences, Ss : {s00, s10, s21, s02, s12}. The agent executes the first action
apply_bg, applying the single-hand recognizer to the word at position-b. It receives
observation o2 and updates its belief over Ss. It subsequently executes action
apply_bd, which applies the double-hand recognizer to the same word, receives
another observation and updates its belief again. At this point, its belief indicates that
the sentence is most likely to be s02 or s12, both of which have sign-2 in position-b. It
thus submits sign-2 as the recognized sign at position-b. Its next action is to execute

apply_ag which results in observing o0. This resolves the sentence as s02 and the
system submits sign-0 as the recognized sign at position-a.

Table 4. Policy execution example 2: actual sentence is s21, sentence recognized successfully.

Time Belief over Ss Action Obs.
0 (0.2, 0.2, 0.2, 0.2, 0.2) apply_bg o1
1 (0.076, 0.076, 0.682, 0.083, 0.083) apply_ad o2
2 (0.012, 0.012, 0.951, 0.013, 0.013) submit_a2 -
3 (0.012, 0.012, 0.951, 0.013, 0.013) submit_b1 -

In example 2 (Table 4), the agent’s first action is again to execute apply_bg which

applies the single-hand recognizer at position-b. It receives observation o1 and
updates its belief over Ss. It subsequently executes action apply_ad which applies the
double-hand recognizer to the word at position-a, receives another observation and
updates its belief again. At this point, its belief indicates a very high probability for
the sentence s21 – a sufficient confidence level for the agent to submit the sign ids at
both word positions without further recognizer actions.

The two examples above show that the agent adapts its actions according to the
observations it receives (and its belief over Ss) during policy execution. Both the
sequence and number of times it applies the available recognizers vary between trials
as it adapts its behaviour to the observations it receives.

5 Conclusions and Future Work

We have shown how the SL recognition task in human-computer interaction systems
can be formulated as a POMDP problem and how the solution to the problem allows
for real-time adaptive behaviour. We illustrated the POMDP approach on a simple 2-
word sentence recognition problem and experimentally showed that the computed
POMDP policy performs recognizer actions only as many times as is necessary for
sufficent sign disambiguation, and that it adaptively selects which recognizer to apply
at each sequential step.

Admittedly however, the illustrated problem as we have presented it here is
relatively simple and our experiments so far are just a preliminary investigation into
the feasibility of using POMDPs in the SL recognition domain. As such there are
many ways in which this work can be extended. We discuss some of these below and
give some indications of how to tackle the resultant issues.

With the current 3-sign vocabulary and 2-word sentence recognition problem, we
can experiment with different settings of the parameter α in the reward function
(currently set to 10 in our experiments) and different sentence models, and measure
the accompanying changes (if any) in the sign and sentence accuracies. So far, all our
experiments have been done on simulation data. It would be highly informative to
experiment with learning the sentence model and POMDP observation function from
training examples of real-world data and executing the computed POMDP policy on

real-world test data. Such experiments would be a big step in further validating the
feasibility of the POMDP approach.

A major assumption that we have made in our problem formulation is the
availability of individual words which have been explicitly segmented from the SL
input sentence. Although there have been many previous works on explicit
segmentation of SL sentences (see [5] for a short review), the approaches generally
either rely on tuning threshold values or do not generalize well across different sets of
sentences and/or different signers. One possible approach to doing away with explicit
segmentation is to use one of the available recognizers to perform implicit
segmentation on sentences. The segmented results are then used for the other
recognizers. For example, a hidden Markov model network could be learned from
training data consisting of features from the dominant hand, and then used to segment
test sentences by applying the Viterbi algorithm. However, this forces the recognition
system to always apply the recognizer that performs the segmentation. An ideal
system would integrate implicit sentence segmentation with selective application of
recognizers in a unified POMDP model. A promising direction to consider for the
structure of such a model is hierarchical action and state spaces [8].

As we extend the current model to larger vocabularies and longer sentences, there
are two main issues that need to be considered. Firstly, it will become infeasible to
enumerate all possible sentences in the sentence model. Instead, a bigram model
might be used instead. This would require restructuring the subspace |Ss|. Secondly,
the difficulty of solving the corresponding POMDP model will increase very quickly
with vocabulary size and sentence length. To get an idea of how quickly, we note that
the number of subspaces which form part of the cross product that make up the
overall state space S, increases linearly with vocabulary size and sentence length. The
number of states, |S|, in turn increases exponentially with the number of subspaces in
the model. And finally the difficulty of solving a POMDP model increases
exponentially with |S|. To solve the scalability problem, we might consider
approaches that compress the state space, such as in [3].

References

1. U. von Agris, J, Zieren, U. Canzler, B. Bauer, K.-F. Kraiss: Recent Developments in Visual
Sign Language Recognition. In: Univ. Access Inf. Soc., vol. 6, pp. 323 --362 (2008)

2. L. Kaelbling, M. Littman, A. Cassandra: Planning and Acting in Partially Observable
Stochastic Domains. In: Artificial Intelligence, vol. 101, no. 1–2, pp. 99–134 (1998)

3. J. Williams, S. Young: Scaling POMDPs for Spoken Dialogue Management. In: IEEE
Trans. on Audio, Speech & Language Processing, vol. 17, no. 7 (2007)

4. M. Sridharan, J. Wyatt, R. Dearden: HiPPo: Hierarchical POMDPs for Planning Information
Processing and Sensing Actions on a Robot. In: Intl. Conf. on Automated Planning &
Scheduling (2008)

5. W.W. Kong, S. Ranganath: Automatic Hand Trajectory Segmentation and Phoneme
Transcription for Sign Language. In: IEEE Conf. Automatic Face & Gesture Recog. (2008)

6. Available at http://motion.comp.nus.edu.sg/software/appl/appl.html.
7. H. Kurniawati, D. Hsu, W. Lee: SARSOP: Efficient Point-based POMDP Planning by

Approximating Optimally Reachable Belief Spaces. In: Proc. RSS (2008)
8. J. Pineau, S. Thrun: High-level Robot Behaviour Control Using POMDPs. In: AAAI (2002)

http://motion.comp.nus.edu.sg/software/appl/appl.html

