
Motion Planning for People Tracking in Uncertain and Dynamic
Environments

Tirthankar Bandyopadhyay, Nan Rong, Marcelo Ang, David Hsu, Wee Sun Lee

Abstract—Target tracking is an important capability for au-
tonomous robots. The goal of this work is to construct motion
strategies for a robot so that it can handle visual and mobility
obstruction due to obstacles and maneuver effectively to track a
mobile target in a dynamic, uncertain environment. There are two
broad approaches to address dynamic changes and uncertainties
in the environment: to react fast or to plan ahead. The choice
often depends on the amount of prior information available
on the environment and the target behavior. This paper gives
an overview of our work on target tracking using these two
approaches.

First, we present a greedy algorithm. It uses purely local
geometric information from the robot’s sensor to compute the
robot’s motion at each time step, and yet carefully balances the
robot’s ability to track the target in both the current and the
future time. The algorithm uses only information from the robot’s
sensor and requires no prior information on the environment or
the target behavior. This has been shown to work well on a real
robot with a 2-D laser sensor in a crowded school cafetaria.

Second, we use partially observable Markov decision process
(POMDP) to build a model of target behavior. As a result, the
robot is capable of more sophisticated tracking behavior. For
example, it may intentionally allow the target to get out of sight
in order to minimize its own movement and save energy, but
does not compromise long-term tracking performance. This is
ongoing work and we show simulation results demonstrating the
effectiveness of the approach.

I. INTRODUCTION

Target tracking has many applications. In home care set-
tings, a tracking robot can follow elderly people around and
alert caregivers of emergencies. In security and surveillance
systems, tracking strategies enable mobile sensors to monitor
moving targets in cluttered environments. In this paper, we
focus on developing motion strategies for a robot equipped
with visual sensors so that it can effectively track and follow
a moving target, despite obstruction by obstacles. Target
identification, an important component of target tracking is
assumed.

Just as in classic motion planning [13], we must consider
motion constraints resulting from both obstacles in the envi-
ronment and the robot’s mechanical limitations. In particular,
the robot must not collide with obstacles. Target following has
the additional visibility constraints due to sensor limitations,
e.g., obstacles blocking the view of the robot’s camera. Both

Tirthankar Bandyopadhyay is with CENSAM IRG, SMART
tirtha@smart.mit.edu

Nan Rong is a PhD. student at CMU nan.rong@gmail.com
Marcelo Ang is Associate Professor in Department of Mechanical

Engineering, National University of Singapore, mpeangh@nus.edu.sg
David Hsu and Wee Sun Lee are Associate Professors in De-

partment of Computer Science, National University of Singapore,
dyhsu@comp.nus.edu.sg,leews@comp.nus.edu.sg

motion constraints and visibility constraints play a significant
role for target following in cluttered and dynamic environ-
ments.

The robot can address dynamic changes and uncertainties
in the environment either by reacting fast to each changes
or by modeling these uncertainties and planning ahead. The
choice depends on the availability of prior information to
the robot. When the environment or the target behavior is
unknown, the robot has to plan its motion based on just the
local information available and try to maximize the duration
for which it can keep the target in view. On the other hand,
when the environment is known and the target behavior can be
modeled, the robot can incorporate this information to generate
sophisticated motion strategies that maximizes the overall time
that the target is in view.

This paper gives an overview of our work in following
the target using these two approaches. In the rest of this
section, we motivate and describe the approaches in light of
two concrete examples (Figure 1).

(a) (b)
Fig. 1. Different scenarios: (a) Crowded canteen environment : Highly
dynamic and unknown environment, suitable for local planning (b)
Home care application : Uncertainty in target’s position handled by
POMDP tracker can generate sophisticated behaviors.

Let us take a specific scenario of an automated personal
shopping assistant following an elderly person in a shopping
mall, or keeping an eye on young kids while their parents shop.
The shopping mall is a complex environment. People walking
around add to the visual occlusions and motion obstructions,
thereby creating a highly cluttered and dynamic environment
(Figure 1a). While the layout of the environment might be
available in some cases, exact maps for localizing the robot are
hardly provided. On top of that, the target can be completely
unpredictable in moving from one shop to another. In such
situations where little is known about the target behavior or
the environment, a local greedy strategy is more effective than
complete planning.

Key to our algorithm is the definition of a risk function,
which tries to capture the targets ability in escaping from the

dyhsu
Text Box
IEEE Int. Conf. on Robotics & Automation, Workshop on People Detection & Tracking, 2009

robot sensors visibility region in both short and long terms.
To select actions effectively, the robot must balance between
the short-term goal of preventing the immediate loss of the
target and the long-term goal of keeping it visible for the
maximum duration possible. Interestingly, a good compromise
can be achieved, using only local information available to
the robots sensors. By analyzing the local geometry, our
algorithm computes a global risk function as a weighted
sum of components, each associated with a single visibility
constraint. It then chooses an action to minimize the risk
locally in a greedy fashion.

As the algorithm uses only local geometric information
available to the robots visual sensors, it does not require a
global map and thus bypasses the difficulty of localization with
respect to a global map. Furthermore, uncertainty in sensing
and motion control does not accumulate. This improves the re-
liability of tracking. We have tested the algorithm in a crowded
school cafeteria at lunch time. The crowd of students moving
towards food stalls and then towards their seats create a
truly dynamic and cluttered environment. Our implementation
shows that the tracker is robust to temporary occlusions and
in uneven terrain. The algorithm scales well with high clutter
and obstructions and shows good performance for reasonable
target behavior.

On the other hand, if enough information is available on the
environment and the target behavior, the prior information can
be used by the tracker to come up with ‘smarter’ strategies to
improve the tracking performance. We formulate the tracking
problem into a POMDP framework. POMDP trackers integrate
global information on the target behavior and the environment
for optimal decision making. Let us take a specific scenario
from the homecare application. Imagine that an elderly person
moves around at home and has a call button to call a robot over
for help (Figure 1b). The call status stays on for some time and
then goes off. If the robot arrives while the call status is on, it
gets a reward; otherwise, it gets no reward. Clearly, the robot
should stay close to the person in order to improve the chance
of receiving rewards, but at the same time, the robot needs to
minimize movement in order to reduce power consumption.
Moreover, there might be regions where the robot might not
be allowed to follow, e.g. bathroom etc. So the naive strategy
of following right behind the person does not work well. The
map of the environment is available to the robot but there are
uncertainties in the location of the target and the robot itself
w.r.t this map.

The problem of target tracking comprises of target search-
ing and target following. By modeling target tracking as a
partially observable Markov decision process (POMDP) [20],
searching and following can be unified. The main idea is
to represent the target position as a probability distribution,
whether the target is visible to the robot sensors or not.
So the target position is always “known” to the robot with
some degree of uncertainty. The robot then chooses its actions
according to a probabilistic model of target behaviors and a
reward function that encourages the robot to keep the target
visible.

The POMDP framework offers several other advantages.
It provides a principled way to deal with uncertainties in
robot control and sensing. It also easily incorporates additional
requirements, e.g., minimizing the robot’s power consumption.

We formulate the tracking problem as a POMDP and
use a sampling based algorithm SARSOP [10] to generate
interesting tracking behaviors, e.g., anticipatory moves that ex-
ploit target dynamics, information-gathering moves that reduce
target position uncertainty, and energy-conserving actions that
allow the target to get out of sight, but do not compromise
tracking performance.

II. PRIOR WORK

Target tracking has received tremendous amount to atten-
tion. One important part of target tracking is to detect and
identify the target(s) from noisy, error prone and uncertain
sensor data. Our mention of a few passing references below,
is by no means representative of the work by the community.
For single targets, kalman filter [4] and particle filters [11]
have been used. For multiple targets, Joint Probability Data
Association Filters (JPDAF) was proposed [8] which was
implemented for people tracking among others by [19]. Multi-
Hypothesis Tracking (MHT) was proposed by Reid [18]. An
interesting and quite recent work on leg tracking has been
described in [1].

Motion strategies for target tracking depend on the amount
of information available. If both the environment and the
target trajectory are completely known, optimal target fol-
lowing strategies can be computed through dynamic program-
ming [14], or by piecing together certain canonical curves [6],
If only the environment is known, one can preprocess the
environment by decomposing it into cells separated by critical
curves. The decomposition helps to identify the best robot
action as well as to decide the feasibility of tracking [15]. If
the environment and the target trajectory are both unknown
in advance, one approach is to move the robot so as to
minimize an objective function that tries to capture the short-
and long-term risk of losing the target [3], [9], [16]. With
few exceptions [7], Most of these approaches do not handle
uncertainties in robot control and sensing. Other probabilistic
approaches to target tracking include, e.g., [21].

Our POMDP tracking problem is related to the Tag problem
described in [17]. However, the problems considered here
involve a much larger number of states and more complex
target behaviors. The SARSOP algorithm is also more efficient
than the PBVI algorithm used in [17] and can handle more
realistic target tracking tasks.

Another potential difficulty with the POMDP approach
is the acquisition of a good probabilistic model of target
behavior, but machine learning techniques can help [5].

III. LOCAL GREEDY TRACKER

For an unknown environment and an unknown target behav-
ior, the robot must execute an online reactive strategy that takes
into account only local information. In this work, to identify
and track a person, we use visibility based sensors, based on

F range

obstacle edge

occlusion

fov

R

T

V

Obstacle

(B)

(a) (b)
Fig. 2. Formulation of the target tracking problem into geometrical
parameters extracted from local information

the standard straight line-of-sight visibility model (Figure 2b).
In the free space F , the visibility set V(x) is given by,

V(x) = {q ∈ F | xq ⊂ F and d(x, q) ≤ Dmax and
θmin ≤ ang(x, q) ≤ θmax}

where d(x, q) denotes the distance between x and q, while
ang(x, q) is the orientation of q w.r.t. x. Information about
the local environment is encoded into the boundary (∂V), of
the visibility polygon (V).

Both the robot and the target’s motion, are formulated with
a simple discrete-time constant velocity model. As the target
behavior is unknown, its velocity (v′) is modeled by a gaussian
around its current heading : v′(t + ∆t) = N (v′(t), σ). The
variance σ gives a measure of confidence in estimating the
target velocity. Although we use a Gaussian distribution to
model the uncertainty in the target behavior, the approach
remains valid for any other velocity prediction method, even
non-parametric ones.

A. Local Greedy Approach Overview

The objective of the robot is to keep the target inside the
robot’s visibility, V , for as long as possible. The target can
escape V through its boundaries that lie in free space. We term
these boundaries as escape edges (Figure 2b). Since the robot
has no control over the enviornment or the target’s motion,
it can only prevent the target’s escape by manipulating the
escape edges, {Gi} away from the target. The ability of the
robot to manipulate Gi effectively is important in maintaining
the target in view. Let us denote the manipulation ability of
the robot for a single escape edge, Gi, by the symbol, ∆Gi.
∆Gi is a function of the robot position, x, and its actions, v:
∆Gi(x, v). The risk of losing the target, on the other hand,
depends on : (a) the target position (x′), (b) the relative target
velocity (v′) w.r.t. to {Gi}, and finally (c) the robot’s ability
to manipulate the edges, ∆Gi. We can then formulate a risk
function (Φ) and choose the robot action, v!, to minimize Φ:

Risk = Φ(x′, v′, {Gi}, {∆Gi(x, v)})
v! = arg min Φ(x′, v′, {Gi}, {∆Gi(x, v)}) (1)

While Φ is the risk of losing the target through any escape
edge in the entire V , we can assign a risk ϕi, of losing the

target to each escape edge, Gi. We approximate the total risk
Φ, by the expected risk for all the gaps.

Φ ≈ E[ϕi] =
∑

i

piϕi(x′, v′,Gi,∆Gi(x, v)), v! ≈
∑

i

piv!
i

(2)
where pi is the probability of the target’s escape through Gi.
pi is computed based on the target’s current velocity, v′. The
details can be found in [3].

However, in choosing v!, the robot has to satisfy many
constraints on the desired robot positions, e.g. obstacle avoid-
ance considerations or on the robot’s actions like kinematic,
dynamic constraints. We define a feasible region, L (x), that
satisfies all the constraints (Ci(x)) in the position domain :
L(x) =

⋂
i Ci(x). The local greedy optimization then chooses

an action (v!), that minimizes Φ while satisfying L (x) in the
time step ∆t,

v! = arg min Φ(x′, v′, {Gi}, {∆Gi(x, v)}), s.t v!∆t ∈ L(x)
(3)

B. Risk Formulation : ϕ

R1

R2

T

P

vr

vn

g

R

Gi

e

r − e

T

r

r′

O

D

v

r̂
n̂

G

B

C
L

R

sr
sb

(a) (b) (c)
Fig. 3. (a) Relative position determines risk, (b) Local geometric
parameters, (c) Obstacle Dilation

For successful tracking, the robot must balance the short-
term goal of preventing the immediate loss of the target
through these escape edges and the long-term goal of max-
imizing the duration of tracking in the future. Let us look at
a simple 2-D example shown in Figure 3a.

For the robot positioned at R1, the obstacle (the dark-
colored triangle) creates an occlusion edge g with one endpoint
at P . The robot has the short-term goal of preventing the
target T ’s escape through g at the current instant. It achieves
this by swinging g away from the target, using velocity vn.
The robot’s longer-term goal is to move towards P using
velocity vr, because it can eliminate the occlusion edge g
completely when it reaches P . Since the robot’s maximum
speed is bounded by V , there is a trade off in choosing the
velocity components vr and vn. Clearly, this trade off depends
on the relative positions and velocities of the target and the
robot w.r.t P . For example, the robot at position R2 can afford
a higher vr, as the shortest distance from the target to g is
greater than that of the robot and there is no immediate risk
of losing the target. Whereas at R1, the target is closer to g
than the robot, and the short-term goal of preventing the loss
of target becomes much more important.

We formulate a risk function that incorporates this trade
off between the current and future risk in terms of local
geometrical parameters (Figure 3b).

In the previous work [3], a local greedy algorithm based on
relative vantage was proposed. Relative vantage refers to the
ability of the robot to eliminate Gi before the target can escape
through it. We introduce a region around Gi, called vantage
zone as, D = {q : q ∈ V; dist(q,Gi) ≤ dist(x,Gi)}

The objective of the robot is to keep the targets away from
D and accordingly, we can take the measure of time taken
(tr.v) to move the target outside D, as the risk value. From
Figure 3b,

ϕg = tr.v ≈
dist(t,D)

rel.vel(t,D)
≈ r − e

veff
, v!

i =
ϕg

veff

(
r′

r
n̂ + r̂

)

where veff = vr + vn(r′/r) − v′e is the effective velocity in
the direction along the shortest path from the target to Gi.

Similar considerations can be applied to the field of view
(FoV) limits and the range limits. Derivation of these special
cases are omitted due to space limitation. The reader is pointed
to [2] for details.

C. Obstacle Avoidance

Although, purely low-level reactive obstacle avoidance tech-
niques, can handle dynamic and unknown environment, they
may sometimes move the robot contrary to the required track-
ing direction. On the other hand, planning in the configuration
space may be too computationally expensive in a cluttered and
dynamic environment. We propose a local obstacle avoidance
method with a small look-ahead. The robot’s velocity is used
to enlarge the obstacle edges. These extended obstacles then
constrain the planned robot motion.

First, we approximate the robot’s size by the radius (sr)
of its bounding circle. Then, we compute the finite braking
distance, sb, using the maximum decceleration and the robot’s
current velocity. This braking distance, sb and the robot’s
dimension, sr, defines a collision region C (x), around the
obstacle edge, B, Figure 3c,

C(x) = {q ∈ V : d(q,B) ≤ (sr + sb)} (4)

The robot can actively change the shape of C by changing its
speed and heading. For safe navigation, the robot must avoid
C. If we denote the reachable region of the robot in ∆t, as
R, the feasible region becomes L = R − C. As an example,
assuming omni-directional motion ability of the robot with no
dynamics in Figure 3c, R is a disk of radius, V ∆t, and the
darker shaded region shown is L. Appropriate motion models,
non-holonomic constraints, motion dynamics etc change the
shape of R, but the basic approach remains the same.

We substitute the details of the escape edge risk and the
obstacle avoidance constraints in expression

v! =
∑

i

piv!
i s.t v!∆t ∈ L(x) (5)

D. Experimental Results

The tracking algorithm is implemented on a Pioneer P3-
DX differential drive robot. A SICK-lms200 range sensor is
mounted on the robot. The laser returns 361 readings on a field
of view of 180deg at the resolution of 0.5deg. The maximum
range of the sensor is 8m. The control algorithm runs on a
Pentium M Processor @1.5GHz laptop running Player server
v-2.0.5 on linux. The algorithm runs at 10Hz. Implementation
details are described in [2].

In the following we show a comparison of our algorithm
with visual servo algorithm. Subsequently we showcase two
of our experimental runs that was performed in the school
cafeteria. The videos of these and more experiments performed
on indoor, canteen and outdoor tracking are available on-
line at http://guppy.mpe.nus.edu.sg/∼tirtha/research/Hardware/
hardImpl.html. More detailed analysis and comparison to
existing algorithms is available in [2].

1) Comparison with Visual Servo (Figure 4 & Figure 5)
: In Figure 5, a box is pushed between the target and the
robot to occlude the target. The responses of a simple visual
servo algorithm is compared to the vantage tracker. Since,
the vantage tracker actively tries to avoid possible future
occlusions, it is able to adapt to the changing environment
(Figure 5b-1). A point to note is that the vantage tracker
does not model the motion of the environment but just re-
plans its motion at a high frequency, making the tracker
independent of the dynamic nature of the environment. Later,
when the box stops and the target starts to move (Figure 5c),
the tracker is able to successfully follow the target (Figure 5d).
In comparison, the simple visual servo tracker does not model
the dynamic environment and loses the target from its view
(Figure 4).

(a) (b) (c)
Fig. 4. Visual Servo : Since the robot does not take into account the
environment information (the moving box), it moves straight ahead
towards the target (b) and loses the target behind the occluding box
(c).

2) Tracking in a Crowd (Figure 6) : This experiment was
done during lunch hour to capture the dynamic environment of
the canteen at peak rush time. The robot follows the target in
grey t-shirt (1). As the target moves into the canteen area the
crowd keeps increasing (2,3,4). Moreover in (3,4,5) the robot
has to maneuver through a narrow pathway while avoiding
incoming people and keeping the original target in view which
makes following the target more difficult.

3) Visual Occlusions (Figure 7): A challenging aspect of
following the target in a crowd is when someone walks in

1 2 3 4 5 6

Fig. 6. Target following lunch hour rush crowd at school cafeteria
1 2 3 4 5 6

Fig. 7. Fast online local greedy algorithm is robust to temporary occlusions

(a) (b-1) (b-2)

(c) (d)
Fig. 5. Vantage tracker : (b-2) shows the robot’s local perception of
the environment. The target is marked by T , the blue lines are the
occlusion edges, red line is the most critical occlusion and the green
segment starting from R denotes the robot’s motion decision. The
robot sees the target too close to the occlusion and swings out.

between the robot and the target. In this set of snapshots,
the robot is following the target in green t-shirt when it
faces an temporary occlusion by a lady (in purple) walking
across unexpectedly (2,3,4). The robot slows down to avoid
collision (3,4) and returns to following the target when the
occlusion has passed. Due to the fast online nature of the
tracking algorithm, temporary occlusions in such a dynamic
environment is handled well by the robot.

IV. POMDP TRACKER

We start with a brief review of POMDPs. See [12] for a
more complete introduction. We then describe how to model
the target tracking problem as a POMDP.

A. Background on POMDPs

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its total reward. Formally it is

specified as a tuple (S,A,B, T , Z,R, γ), where S is a set of
states, A is a set of actions, and B is a set of observations.

The agent always lies in some state s ∈ S. In each time
step, it takes some action a ∈ A and moves from a start
state s to an end state s′. Due to the uncertainty in action,
the end state s′ is described as a conditional probability
function T (s, a, s′) = p(s′|s, a), which gives the probability
that the agent lies in s′, after taking action a in state s.
The agent then makes an observation on its current state.
Due to the uncertainty in observation, the observation result
o ∈ B is again described as a conditional probability function
Z(s, a, o) = p(o|s, a) for s ∈ S and a ∈ A.

In each step, the agent receives a real-valued reward R(s, a),
if it lies in state s and takes action a. The goal of the agent is
to maximize its expected total reward by choosing a suitable
sequence of actions. In this work, we consider infinite-horizon
POMDPs, in which the sequence of actions to be chosen has
infinite length. We specify a discount factor γ ∈ (0, 1) so that
the total reward is finite and the problem is well defined. In
this case, the expected total reward is E[

∑∞
t=0 γtR(st, at)],

where st and at denote the agent’s state and action at time t.
The solution to a POMDP is an optimal policy that maxi-

mizes the expected total reward. Normally, a policy is a map-
ping from the agent’s state to a prescribed action. However,
in a POMDP, the agent’s state is partially observable and not
known exactly. So we rely on the concept of belief state, or
belief, for short. A belief is a probability distribution over S.
A POMDP policy π:B → A maps a belief b ∈ B to the
prescribed action a ∈ A.

A policy π induces a value function V π(b) that specifies the
expected total reward of executing policy π starting from b. It
is known that V ∗, the value function associated the optimal
policy π∗, can be approximated arbitrarily closely by a convex
and piecewise-linear function V (b) = maxα∈Γ(α · b), where b
is a discrete vector representation of a belief and Γ is a finite
set of vectors called α-vectors. Each α-vector is associated
with an action, and the policy can be executed by selecting
the action corresponding to the best α-vector at the current

(a) (b)
Fig. 8. Simulation experiments for target tracking.

belief b. So the policy can be represented by a set Γ of α-
vectors. Policy computation, which, in this case, involves the
construction of Γ, is usually performed offline.

Given an policy π, the control of the agent’s actions is
performed online in real time. It consists of two steps executed
repeatedly. The first step is policy execution. If the agent’s
current belief is b, it then takes the action a = π(b), according
the given policy π. The second step is belief estimation. After
the agent takes an action a and receives an observation o, its
new belief state b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s∈S

T (s, a, s′)b(s),

where η is a normalizing constant. The process then repeats.

B. Target Tracking as a POMDP
Our problem setting is motivated by homecare applications.

Imagine that an elderly person moves around at home and
has a call button to call a robot over for help. The call status
stays on for some time and then goes off. If the robot arrives
while the call status is on, it gets a reward; otherwise, it gets
no reward. Clearly the robot should stay close the person in
order to improve the chance of receiving rewards, but at the
same time, the robot needs to minimize movement in order to
reduce power consumption. So the naive strategy of following
right behind the person does not work well.

When the environment information is known and the target
behavior is known, we propose a POMDP tracker. To for-
mulate the problem as a POMDP, we model the environment
as a regular grid. See Figure 8 for examples. The robot and
the target (in this case, the person with the call button) can
occupy any of the grid cells that are free of obstacles. The state
s of this POMDP is composed of the robot position xr, the
target position xt, and the call status c : s = (xr, xt, c). If the
environment contains n free cells, then there are n ·n ·2 = 2n2

distinct states, resulting in a belief space of 2n2 dimensions.
In one time step, the target can stay where it is or move to

a neighboring cell. The target motion is described by a given
probability function T t, conditioned on the target’s current
position: if the target is currently at xt, it will be at x′t in the
next time step with probability T t(xt, x′t) = p(x′t|xt).

The person may turn on the call button in each step with
probability p1. If the call status is on, the person may turn
it off with some probability p2 in each time step, indicating
that help is no longer needed. This model has two main
implications. First, as the call duration follows the geometric
distribution, the mean duration of a call is 1/p2, Second, most
calls are short. The robot must arrive quickly in order to
receive rewards, thus increasing the difficulty of tracking.

The robot motion resulting from an action is described
similarly by another probability function T r, conditioned on
both the robot’s current position and its action. The robot’s
actions consist of commands to stay where it is or to move
to a neighboring cell. If the robot is currently at xr and
takes action a it will be at x′r in the next time step with
probability T r(xr, a, x′r) = p(x′r|xr, a). Note that the robot
may not be able to execute the commands perfectly due to
control uncertainty. This can be modeled with a suitable T r.

We assume that the robot can see the target through its
sensors if they lie in the same or neighboring cells. Uncertainty
on the target position due to sensor noise can be modeled in
the observation probability function Z.

The robot receives a reward, if it reaches the cell that the
target occupies while the call button is on. In one step, if the
robot does not move, it incurs no costs (i.e., negative rewards).
Otherwise, it incurs a cost proportional to the distance traveled.
The robot’s goal is to maximize the expected total discounted
reward.

The POMDP formulation does not explicitly differentiate
whether the target is visible or not. To execute a policy, the
robot maintains a belief of the target position. When the target
is visible to the sensors and the sensor data are good, the belief
is sharpened. When the target is not visible or the sensor data
are poor, the belief becomes more diffuse. In the extreme case,
when the target remains invisible for a long time, the belief
may eventually converge to a uniform distribution. This way,
target searching and target following are unified in a natural
way. Clearly, if the robot knows the target position well, it can
choose better actions and receive higher rewards. Therefore,
an optimal policy favors sharp beliefs, while also taking into
account the cost of obtaining them.

C. Simulation Results
We used SARSOP [10] to compute tracking policies in

several simulated environments. See Figure 8 for examples.
The light blue areas in the figures indicate obstacles. The black
dashed curve indicates the target’s path. The target motion is
non-deterministic: it follows this path, but in each time step, it
may pause or proceed along the path with equal probabilities.
The green area around the robot indicates the robot sensor’
visibility region. The various shades of gray show the robot’s
belief of the target position. Lighter color indicates higher
probability. To focus on target tracking behaviors, we assume
in these experiments that there is no uncertainty in robot
control and sensing. The robot can execute motion commands
and observe its own position and call status perfectly. It can
also observe the target position perfectly, if the target is visible.

Fig. 9. Snapshots of a simulation run.

Uncertainties in control and sensing can be easily incorporated
into the POMDP if needed. If the robot reaches the current
target position while the call status is on, it receives a reward
of 100. The robot receives a reward of −1 for a horizontal or
vertical move, a reward of −

√
2 for a diagonal move, and a

reward of 0 if it stays stationary. The discount factor is set to
0.95.

In the first experiment, we have a home-like environment
(Figure 8a). The corresponding POMDP has 9, 248 states.
SARSOP computed a policy in about 48 minutes. We per-
formed several simulation runs to examine its performance
and observed interesting robot tracking behaviors:

• anticipatory moves that exploit target dynamics,
• information-gathering moves that reduce target position

uncertainty,
• approaching the target along a nearly optimal path when

the robot is called,
• minimizing movement by allowing the target to get

out of sight, but not compromising long-term tracking
performance.

It is important to bear in mind that these behaviors are not
manually specified, but automatically captured by the POMDP
through policy computation.

Snapshots of a single simulation run are shown in Figure 9.
Initially, the target lies within the robot sensor’s visibility

region, and the robot’s belief on target position consists of
a single peak (snapshot 1). As the target moves, the robot
does not follow along and intentionally let the target get out
of sight, in order to minimize movement and reduce energy
consumption. Now, although the target is not visible, the robot
still has the target reasonably well localized by maintaining a
belief on the target position: the target is well within the high-
probability region of the current belief (snapshot 2). Instead
of following the target, the robot tries to anticipate the future
position of the target by exploiting the target dynamics and
makes a move towards this position (snapshot 3). As there
is no call, the robot’s move purely serves the purpose of
gathering information on the target position. When the target
passes by, the belief on target position is sharpened (snapshot
4). If the target is not observed for a while, the uncertainty
may become large, but the robot is still able to maintain a
belief that reflects the current target position well: the target
is located within a high-probability region (snapshot 5). When
there is a call (snapshot 6), it uses the current belief to
find the region that contains the target with high probability.
It then moves towards the region along the shortest path
(snapshots 6–9). In general, the robot may need to search
this region, but here it luckily finds the target right away and
receives a high reward (snapshot 9). The robot then makes
another anticipatory move to reduce target position uncertainty

(snapshots 10–12). Interestingly, the robot position in snapshot
12 is exactly the same as that in snapshot 3, despite that
the target positions and beliefs are quite different. It is, of
course, not coincidence. This particular position guards both
of the two ways into the lower right corner of the environment.
By occupying this position, the robot can intercept the target
as it exits the entrances without following it. The tracking
behavior here reveals that the computed policy captures well
the interaction between the environment geometry and the
target dynamics. In this simulation run, there are 3 calls in
total, and all are answered in time. The target travels a total
distance of 141, while the robot about 20.

In the second experiment, the environment contains a special
cell corresponding to a bathroom lying on the target’s path
(Figure 8b). After entering the bathroom, the target stays
there with probability 0.95 and leaves with probability 0.05
in each step. The corresponding POMDP has 7, 200 states.
SARSOP computed a policy in about 16 minutes. Roughly, to
execute this tracking policy, the robot moves on the inner loop
(the thick white curve in Figure 8b) and follows the target
that moves along the outer loop (the dashed black curve in
Figure 8b). It approaches the target directly when called.

Videos of both experiments above as well as additional
experiments are available at http://motion.comp.nus.edu.sg/
projects/tracking/tracking.html. We are currently performing
more experiments to evaluate tracking performance quantita-
tively.

V. CONCLUSION

In this paper, we gave a brief overview of two approaches
that are adept at tackling the problem of target tracking in
different scenarios depending on the information available for
planning. When the environment and the target behavior is
unknown, an online greedy algorithm that acts based only on
local information is proposed. This has been shown to work
on hardware in the school cafetaria on a crowded lunch hour.
We also compare this work with visual servo in a controlled
setup to show the inherent improvement of the approach. On
the other hand, for known environment and target models,
the POMDP tracker provides more sophisticated behaviors,
where it could lose the target temporarily to minimize its
energy consumption while not compromising the tracking
effectiveness. Simplified assumption about the sensing and
motion models have been made. Early simulation results show
sophisticated robot behaviors.

In this work the target identification is assumed. The target
identification can be seen as a complimentary problem to the
motion planning aspect of target tracking. Improved techniques
for target disambiguation and development of target’s motion
models help in the task of target following. On the other hand,
motion planning for maintaining a good view of the target
aids the sensors to continously sense the target improving
the identification and modeling of the target reliably. Basic
constraints of the sensors like the field of view and range
limitations can be incorporated into the motion strategy such
that the robot always keeps the sensor facing the target.

Uncertainty in the target track can be included as an objective
function for the robot to minimize by planning a suitable
motion strategy.

REFERENCES

[1] K. O. Arras, S. Grzonka, M. Luber, and W. Burgard. Efcient people
tracking in laser range data using a multi-hypothesis leg-tracker with
adaptive occlusion probabilities. In Proceedings of the Int. Conf. on
Robotics and Automation., 2008.

[2] T. Bandyopadhyay, D. Hsu, and M. Ang Jr. Motion strategies for people
tracking in cluttered dynamic environments. In Proc. Int. Symp. on
Experimental Robotics, 2008.

[3] T. Bandyopadhyay, Y. Li, M. Ang Jr., and D. Hsu. A greedy strategy
for tracking a locally predictable target among obstacles. In Proc. IEEE
Int. Conf. on Robotics & Automation, pages 2342–2347, 2006.

[4] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
Academic Press Inc., Orlando, Florida, 1988.

[5] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion
patterns of people for compliant robot motion. Int. J. Robotics Research,
24(1):3148, December 2005.

[6] A. Efrat, H. González-Baños, S. Kobourov, and L. Palaniappan. Optimal
strategies to track and capture a predictable target. In Proc. IEEE. Int.
Conf. on Robotics & Automation, pages 3789–3796, 2003.

[7] P. Fabiani, H. González-Baños, J. Latombe, and D. Lin. Tracking a
partially predictable target with uncertainties and visibility constraints.
J. Robotics & Autonomous Systems, 38(1):31–48, 2002.

[8] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of
multiple targets using joint probabilistic data association. IEEE Journal
of Oceanic Engineering, OE-8(3):173184, July 1983.

[9] H. González-Baños, C.-Y. Lee, and J.-C. Latombe. Real-time combi-
natorial tracking of a target moving unpredictably among obstacles. In
Proc. IEEE Int. Conf. on Robotics & Automation, pages 1683–1690,
2002.

[10] D. Hsu, W. Lee, and N. Rong. A point-based POMDP planner for
target tracking. In Proc. IEEE Int. Conf. on Robotics & Automation,
pages 2644–2650, 2008.

[11] M. Isard and A. Blake. Condensation – conditional density propagation
for visual tracking. Int. J. Computer Vision, 29-1:5–28, 1998.

[12] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence,
101, 1998.

[13] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

[14] S. LaValle, H. González-Baños, C. Becker, and J. Latombe. Motion
strategies for maintaining visibility of a moving target. In Proc. IEEE
Int. Conf. on Robotics & Automation, pages 731–736, 1997.

[15] R. Murrieta, A. Sarmiento, and S. Hutchinson. A motion planning
strategy to maintain visibility of a moving target at a fixed distance
in a polygon. In IEEE Int. Conf. on Robotics & Automation, 2003.

[16] R. Murrieta-Cid, H. H. González-Baños, and B. Tovar. A reactive motion
planner to maintain visibility of unpredictable targets. In Proc. IEEE.
Int. Conf. on Robotics & Automation, pages 4242–4248, 2002.

[17] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for pomdps. In Proc. Int. Jnt. Conf. on Articial
Intelligence, page 477484, 2003.

[18] D. B. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, AC-24(6):843854, December 1979.

[19] D. Schulz, W. Burgard, D. Fox, and A. Cremens. People tracking with
mobile robots using sample-based joint probabilistic data association
filters. International Journal of Robotics Research (IJRR),, 22(2):99–
116, 2003.

[20] R. Smallwood and E. Sondik. The optimal control of partially observable
markov processes over a nite horizon. Operations Research, 21:1071–
1088, 1973.

[21] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry. Probabilistic
pursuit-evasion games: theory, implementation, and experimental evalu-
ation. IEEE Trans. on Robotics & Automation, 18:662669, 2002.

