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Abstract— This paper presents an intention-aware online
planning approach for autonomous driving amid many pedes-
trians. To drive near pedestrians safely, efficiently, and
smoothly, autonomous vehicles must estimate unknown pedes-
trian intentions and hedge against the uncertainty in intention
estimates in order to choose actions that are effective and
robust. A key feature of our approach is to use the partially
observable Markov decision process (POMDP) for systematic,
robust decision making under uncertainty. Although there are
concerns about the potentially high computational complexity
of POMDP planning, experiments show that our POMDP-
based planner runs in near real time, at 3 Hz, on a robot golf
cart in a complex, dynamic environment. This indicates that
POMDP planning is improving fast in computational efficiency
and becoming increasingly practical as a tool for robot planning
under uncertainty.

I. INTRODUCTION

Imperfect robot control, sensor noise, and unexpected
environment changes pose significant challenges to effi-
cient and reliable robotic systems. The partially observable
Markov decision process (POMDP) [16] is a powerful math-
ematical model that captures such uncertainties for robust
decision making and planning. However, the use of POMDPs
for robot planning under uncertainty is not widespread. Many
are concerned about its reputedly high computational cost. In
this work, we apply DESPOT [17], a state-of-the-art approx-
imate online POMDP planning algorithm, to autonomous
driving in a complex, dynamic environment (Fig. 1).

There are many successful autonomous vehicles today
(see, e.g., [18], [20]), but it is still uncommon to see
autonomous vehicles driving among many pedestrians. To
drive near pedestrians safely, efficiently, and smoothly, au-
tonomous vehicles must estimate unknown pedestrian inten-
tions and hedge against the uncertainty in intention estimates
in order to choose actions that are effective and robust. They
must also reason about the long-term effects of immediate
actions. POMDP planning provides a systematic approach
to achieve these objectives. Simple reactive control methods
are inadequate here. They choose actions based on sensor
data on the current system state. They do not hedge against
sensing uncertainty and do not consider an action’s long-term
effects. This often results in overly aggressive or conservative
actions, or attractive short-term actions with undesirable
longer-term consequences. See Section III for an example.
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Fig. 1. The autonomous golf cart drives in a crowded, dynamic environment.

We build a POMDP for autonomous driving among many
pedestrians. We model the intention of a pedestrian as a
subgoal location [8] and model pedestrian behavior con-
ditioned on the intention as a hidden variable. The model
captures uncertainty in pedestrian goal estimation as well as
uncertainties in vehicle control and sensing.

To achieve real-time performance with limited computa-
tional resources, we adopt a two-level hierarchical planning
approach and exploit POMDP planning only in the critical
part of the system to hedge against the uncertainty in
predicting pedestrian behaviors. At the high level, we apply
the hybrid A∗ algorithm [18] to search for a path through
less crowded regions, based on a simplified predictive model
of pedestrian motions. At the low level, we perform online
POMDP planning in near real time to control the speed of
the vehicle along the planned path. Online POMDP plan-
ning interleaves planning and plan execution. It maintains
a belief, i.e., a probability distribution over system states,
as a representation of uncertainty. At each time step, the
algorithm performs a lookahead search for the best action
at the current belief, and the vehicle executes the chosen
action immediately. The algorithm then updates the belief
by incorporating new sensor data received. We replan at both
levels in each time step in order to handle dynamic changes
in the environment.

We implemented our approach on an autonomous golf cart
and tested it extensively in a plaza on our university campus.
Experiments show that the vehicle is capable of driving
safely and smoothly in a crowded unstructured environment.
To our knowledge, POMDP planning has not been applied
to complex environments of this scale before. One main
contribution of this work is to demonstrate the latest progress
in online POMDP planning, in particular, the DESPOT
algorithm [17], as a tool for robot planing under uncertainty.

POMDPs have been used before for intention-aware mo-
tion planning [1]. The earlier work builds a discrete-state
POMDP model and solves the model offline for a policy.
By exploiting online POMDP planning, specifically, the
DESPOT algorithm, our work makes several advances. First,



online planning allows us to handle dynamic environment
changes, e.g., sudden appearance of new obstacles, while
the earlier work assumes a fixed environment. Second,
the DESPOT algorithm allows continuous state variables
in POMDP models, which enable us to model vehicle
and pedestrian dynamics more accurately and conveniently.
Third, due to the limitation on computational efficiency, the
earlier algorithm computes the action for each pedestrian in
isolation and then chooses the most conservative one. The
new DESPOT algorithm scales much better and allows for
a more realistic model that treats the pedestrians jointly and
captures their interactions.

II. RELATED WORK

There are two main approaches to POMDP planning:
offline policy computation and online search. In offline
planning, we compute beforehand a policy contingent upon
all possible future scenarios, and the robot executes the
computed policy based on the sensor data received (see,
e.g., [14]). It is difficult to scale up offline planning to very
large POMDPs due to the exponential number of scenarios.
It is also difficult to handle environment changes, as all
such changes must be anticipated and modeled in advance.
In contrast, online planning interleaves planning and plan
execution (see, e.g., [6], [12], [15], [17]). The robot searches
for the best action for the current belief only, executes the
action, and updates the belief. The process then repeats
at the new belief. These online algorithms apply several
algorithmic techniques for computational efficiency, includ-
ing heuristic search, branch-and-bound pruning, and Monte
Carlo sampling [12]. POMCP [15] and DESPOT [17] are
among the fastest online POMDP algorithms available today.
Both can handle POMDPs with very large number of states,
but DESPOT has a much stronger worst-case performance
bound. In this work, we build a two-level hierarchical online
planning approach based on DESPOT for real-time control
of a robot vehicle in a crowded, dynamic environment.

Today there are many successful systems for autonomous
driving (see, e.g., [11], [20]). It is beyond the scope of
this paper to survey this new and exciting field of robotics.
So far, these systems have paid relatively little attention to
close interaction with pedestrians, especially, in unstructured
environments. Such technology is useful for providing on-
demand, personalized transportation in densely populated
urban localities, such as university campuses, business parks,
downtown shopping districts, . . . , and for handling the first
and the last mile of public transportation systems [24].

One main difficulty of autonomous driving among pedes-
trians is to incorporate pedestrian intentions and behaviors
into decision making. There are two related, but orthogonal
issues here. One is pedestrian intention and behavior model-
ing. There are various modeling approaches based on, e.g.,
linear dynamic systems with Gaussian noise, hidden Markov
models (HMMs) [2], [22], Gaussian processes (GPs) [5].
This work focuses on the orthogonal issue, decision mak-
ing, which determines the vehicle action given a predictive
pedestrian behavior model. The simplest approach is reactive
control (see, e.g., [4], [13]). It does not require a sophisticated
predictive model and basically ignores prediction uncertainty

Fig. 2. The robot vehicle approaches a pedestrian on the sidewalk.

during decision making. It is fast, but often results in sub-
optimal decisions over the long term. A more sophisticated
approach is to compute an open-loop plan, i.e., a path, using
a predictive model and then execute the plan with a feedback
controller (see, e.g., [9], [21], [22]). POMDP planning goes
one step further: it reasons about uncertainties systematically
and computes a close-loop plan that handles all future con-
tingencies. In addition to pedestrian behavior uncertainty, the
POMDP approach can also incorporate vehicle control and
sensing uncertainties into decision making systematically.
Conceptually, POMDP planning is analogous to computing
an optimal controller for a linear quadratic Gaussian (LQG)
system, but POMDP planning is more general and does
not assume linear dynamics or Gaussian noise distribution.
The advantages of POMDP planning comes at the cost
of higher computational complexity. One purpose of this
work is to argue that POMDP planning is improving fast
in computational efficiency and is becoming more practical
as a tool for robot planning under uncertainty. Of course, it
does not replace other approaches. The trade-off between the
optimality of decision making and computational efficiency
remains, but the gap is narrowing.

III. OVERVIEW

To drive near pedestrians effectively, a robot vehicle must
infer pedestrian intentions and hedge against the uncertainty
in intention estimates for robust decision making. We may
capture this uncertainty in a belief, i.e., a probability distribu-
tion over possible intentions. This is, however, not sufficient.
We must also reason about the long-term effects of vehicle
actions and sensor observations. Consider, for example, the
vehicle approaches a pedestrian walking on the sidewalk
(Fig. 2). If the pedestrian stays on the sidewalk, the vehicle
may accelerate and pass him. If the pedestrian crosses the
road, the vehicle may slow down to yield. Let (p, 1 − p)
denote the belief over these two intentions. Assume, for
the sake of argument, that the initial belief is (0.51, 0.49).
Should the vehicle then accelerate and attempt to pass the
pedestrian? Based on the maximum likelihood consideration,
it should. Unfortunately, soon after, the vehicle receives
sensor data indicating that the pedestrian is turning and may
step off the sidewalk. The belief gets updated to (0.35, 0.65),
and the vehicle brakes to slow down. However, the earlier
acceleration results in high speed, and the vehicle fails to
stop in time to prevent an accident. The reason behind this
failure is the greedy nature of maximum-likelihood decision
making at the very beginning. It does not reason about the
long-term effects of robot actions. It does not consider the
effects of future sensor observations on the belief, i.e., the
value of information [7]. This limitation is common to most
greedy decision-making approaches, including, in particular,
reactive control. In contrast, POMDP planning performs such
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Fig. 3. Two-level POMDP-based planning for autonomous driving.

reasoning in a principled manner.
The benefit comes at a cost. Online POMDP planning

searches a belief tree rooted at the current belief (Fig. 4).
The tree branches on all actions and observations. In the
worst case, it has an exponential size O(|A|H |Z|H), where
|A| and |Z| denote the sizes of action and observation
spaces, respectively, and H is the maximum tree height.
For autonomous driving, both the action space and the
observation space can be large.

For computational efficiency, we decompose the planning
task into two levels. The high level controls vehicle steering.
It builds a cost map, which encodes distributions of static
obstacles and pedestrians, and plans a path that minimizes
the expected collision cost. The low level controls vehicle
speed along the planned path. It applies online POMDP
planning to handle uncertainties in pedestrian intention es-
timates, imperfect vehicle control, etc.. This decomposition
substantially reduces the action space for POMDP planning,
while the DESPOT algorithm for POMDP planning is ca-
pable of handling large observation spaces. Additionally,
the decomposition simplifies system implementation, as it
enables independent tests of separate system components.

Our overall planner consists of three modules: a POMDP
speed planner (Section IV), a path planner (Section V), and
a belief tracker (Section VI). See Fig. 3. The belief tracker
maintains a belief over system states. At each time step, it
performs Bayesian updates to incorporate new information
from vehicle actions and sensor data into the belief. The
path planner then plans a minimum-cost path for the current
belief and outputs the vehicle steering angle for the current
step. Given the path and the current belief, the POMDP
speed planner computes a conditional plan over the next H
steps. However, it outputs only the first step of the plan and
sends the desired acceleration to the vehicle controller for
execution. To handle environment changes, we replan at both
the high and the low levels at each time step.

IV. INTENTION-AWARE ONLINE POMDP PLANNING

A. POMDP Preliminaries

A POMDP models a system taking a sequence of actions
under uncertainty to maximize its total reward. Formally, a
POMDP is a tuple (S,A,Z, T,O,R, γ), where S, A, and Z
denote the system’s state space, action space, and observation
space, respectively. At each time step, the system takes an
action a ∈ A to move from a state s ∈ S to s′ ∈ S
and then receives an observation z ∈ Z. A conditional
probability function T (s, a, s′) = p(s′|s, a) models the state-
transition dynamics. It specifies the probability distribution
of the new system state when the system takes action a
in state s. Similarly, the conditional probability function
O(s′, a, z) = p(z|s′, a) models noisy sensor observations.

The system gets an immediate reward R(s, a) for taking
action a in state s.

In a partially observable system, the system state is not
completely known. We maintain a belief over possible states.
Let bt−1 be the belief at time t−1. If the system takes action
at and receives observation zt at time t, we then apply the
Bayes’ rule to obtain the new belief bt:

bt(s
′) = ηO(s′, at, zt)

∑
s∈S

T (s, at, s
′)bt−1(s), (1)

where η is a normalizing constant. This defines a belief up-
date function τ such that bt = τ(b0, a1, z1, a2, z2, . . . , at, zt),
where b0 is an initial belief.

A key concept in POMDP planning is a policy, a mapping
π that specifies the action a = π(b) at belief b. In online
POMDP planning, we seek a policy that maximizes the
value, i.e., the expected total reward at the current belief b:

Vπ(b) = E
( ∞∑
t=0

γtR
(
st, π(bt)

) ∣∣ b0 = b
)
, (2)

where γ ∈ (0, 1) is a discount factor, which places prefer-
ences for immediate rewards over future ones.

B. A POMDP Model for Pedestrian Avoidance
Our POMDP planner controls the vehicle acceleration

along a given path.
1) Vehicle Modeling: The vehicle state contains the posi-

tion (x, y), orientation θ, and instantaneous speed v. Our
POMDP model has three discretized actions that control
the acceleration: ACCELERATE, MAINTAIN, and DECELERATE.
The separate path planner controls the steering angle. Given
the chosen acceleration and steering angle, we integrate the
system forward for a fixed time duration ∆t and add a
small amount of noise to form a predictive model of vehicle
dynamics [19]. This simple dynamic model satisfies the
nonholonomic constraint of a car.

2) Pedestrian Modeling: The state of pedestrian i contains
the position (xi, yi), goal gi, and instantaneous speed vi
towards the goal. The goal captures the pedestrian’s in-
tention. Typically, a goal g represents a specific location
(xg, yg) in the environment. We assume that at each time
step, pedestrian i walks a distance vi∆t in the direction
of the goal, with a small amount of Gaussian noise in the
direction. The speed vi remains constant within a single
planning cycle, but may change from one cycle to the next
(see Section VI). There is a special goal, which represents the
pedestrian standing still, with only small random movement.
In summary, these lead to a probablistic dynamic process
p(x′i, y

′
i|xi, yi, gi, vi) describing pedestrians’ movement from

the current position (xi, yi) to the next position (x′i, y
′
i) given

the goal gi and speed vi. Our model is currently very basic,
but we plan to build richer and more accurate probabilistic
dynamic models through learning [2], [22] in the future.

The pedestrian model does not consider that the intention
of a pedestrian may change. However this can be handled by
online POMDP planning through belief update and replan-
ning. See Section VII-B for experimental results.

3) Sensor Modeling: An observation is a vector consisting
of discretized values of vehicle position, vehicle speed, and
positions of all pedestrians. We do not model observation
noises for these variables, as they are small and do not
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affect decision making substantially. However, there are no
direct observations on pedestrian intentions, and they are the
key partially observable variables in our model. We must
infer the pedestrian intentions from the observations received
over time, and also hedge against the estimation uncertainty
during decision making.

4) Reward Modeling: The reward function prescribes the
desirable driving behavior: safe, efficient, and smooth.
• If any pedestrian gets within a small distance Dcol of

the vehicle, there is a very large penalty Rcol. This is
to ensure safety.

• If the vehicle reaches within a small distance Dgoal of
the destination, there is a large reward Rgoal. This is to
encourage the vehicle to reach the destination.

• There is a penalty Rspeed = (v − vmax)/vmax, where
v and vmax are the current and the maximum vehicle
speed, respectively. This encourages driving at a higher
speed when it is safe to do so.

• Finally, there is is a small penalty Raccel for the actions
ACCELERATE and DECELERATE. This penalizes excessive
speed changes and encourages smooth driving.

C. DESPOT
To choose the best vehicle action at the current belief b0,

we perform online POMDP planning. We search a belief
tree with root at b0 and maximum height H (Fig. 4). Each
tree node represents a belief, and each edge represents an
action-observation pair. If a child node b′ is connected to its
parent b by an edge (a, z), then b′ = τ(b, a, z) according to
(1). To search a belief tree, we perform a post-order traversal.
At each leaf node, we simulate a default policy to obtain a
lower bound on its value. At each internal node, we apply
Bellman’s principle of optimality to choose a best action:

V (b) = max
a∈A

{∑
s∈S

b(s)R(s, a)+γ
∑
z∈Z

p(z|b, a)V
(
τ(b, a, z)

)}
,

(3)
which recursively computes the maximum value of action
branches and the average value of observation branches.
The result is an approximately optimal policy π for the
current belief b0. The vehicle then executes the first action
of the policy, π(b0). The idea is simple. However, the tree
grows on the order of O(|A|H |Z|H). It is thus impractical
to construct or search the full tree when the action space or
the observation space is large.

To overcome this challenge, we use DESPOT, whose
key strengths include handling large observation spaces. For

completeness, we provide a brief summary of DESPOT’s
main idea here. See [17] for details. Intuitively, we do not
need to examine all observation branches to identify an
approximately optimal action, because the second sum in (3)
computes an average value over observation branches. A
sampled subset of observations branches may be sufficient
to estimate this average. The key idea of DESPOT is to
summarize the execution of all policies under K sampled
scenarios. Under each scenario, a policy traces out a path
in the belief tree (Fig. 4). It corresponds to a particular
sequence of action chosen by the policy and observation
received. We now define a subtree, called DEterminized
Sparse Partially Observable Tree (DESPOT), which contains
only the belief-tree nodes and edges traversed by all policy
under the sampled scenarios (Fig. 4). A DESPOT tree is a
sparsely sampled belief tree. While the original belief tree
contains O(|A|H |Z|H) nodes, the DESPOT tree contains
only O(|A|HK) nodes, leading to dramatic improvement
in computational efficiency for moderate K values. Equally
importantly, we can prove that a small DESPOT tree is
sufficient to produce an approximately optimal policy with
bounded regret, provided that an optimal policy admits a
compact representation [17].

More precisely, we define a DESPOT tree with root b0
using a deterministic simulative model. Here, a scenario
is defined as a random sequence φ = (s0, φ1, φ2, . . .), in
which the start state s0 is sampled according to the belief
b0 and each φi is a real number sampled independently
and uniformly from [0, 1). The deterministic simulative
model is a function g : S × A × R 7→ S × Z such
that if a random number φ is distributed uniformly over
[0, 1), then (s′, z′) = g(s, a, φ) is distributed according
to p(s′, z′|s, a) = T (s, a, s′)O(s′, a, z′). If we simulate a
policy π using this model under the scenario φ, the sim-
ulation generates a trajectory (s0, a1, s1, z1, a2, s2, z2, . . .)
such that (st, zt) = g(st−1, at, φt), at = π(bt), and bt =
τ(b0, a1, z1, . . . , at, zt). The value of π under the scenario φ
is Vπ(seq) =

∑∞
t=0 γ

tR(st, at). The empirical value V̂π(b0)
of π under a set of K sampled scenarios is the average value
over the individual scenarios. This estimate then replaces the
exact value V (b0) when we evaluate (3).

DESPOT is an anytime algorithm, which builds its tree
incrementally by performing heuristic search guided by a
lower bound and an upper bound on the value at each
tree node. For the lower bound at a leaf node bl, we use
the empirical value of a default policy under the sampled
scenarios. Any valid policy may serve as a default policy and
provides a lower bound on the value of an optimal policy.
Our current implementation uses a simple reactive controller.
It chooses ACCELERATE, MAINTAIN, or DECELERATE based
on two distance thresholds Dfar and Dnear of the nearest
pedestrian to the car. The value of this policy under a set
of sampled scenario can be easily calculated by simulation.
For the upper bound at bl, it is computed as the average
of the upper bounds for the scenarios. There are two cases
for computing the upper for a scenario. If the vehicle and
a pedestrian collides under the scenario, the bound is Rcol.
Otherwise, it is γtRgoal, where t is the minimum number of
steps to reach the goal, assuming that the vehicle drives at



maximum speed with no pedestrians around. We then take
the average over the sampled scenarios to obtain the upper
bound at bl. For the internal nodes of the DESPOT tree, we
evaluate their lower and upper bounds recursively using (3).

The speed planner computes a policy over the entire
DESPOT tree to hedge against uncertainty, but sends only
the first step of the policy, the action at the root of tree to
the vehicle for execution.

V. PATH PLANNING

The path planner searches for a minimum-cost path that
is potentially safe, fast, and smooth to drive. Compared
with standard path planning, our path planner incorporates
information on pedestrian movements into the cost.

We represent a path ρ as a sequence of point
(x0, y0), (x1, y1), . . . , (xn, yn) equally spaced along ρ with
distance ` between successive points. We define the path cost

C(ρ) =

n∑
i=0

λiCst(xi, yi) +

n∑
i=0

λiCped(xi, yi) +

n−1∑
i=1

λiCsm(ρ, i)

(4)
for a fixed constant λ ∈ (0, 1]. The path cost is the sum

of three components. The first one Cst penalizes collision
with static obstacles, the second one Cped penalizes collision
with pedestrians, and the thrid component Csm penalizes
non-smooth paths. Since we replan at each time step, the
beginning of the path is closer to execution and more
important. So we discount the cost exponentially by λ.
• Cst(x, y) is a cost map of the environment discretized

with a fixed-resolution grid. We place a potential
field [10] around each static obstacle in the cost map.

• Cped(x, y) accounts for predicted future pedestrian
movements. If the uncertainty on the pedestrian’s in-
tention is high, we put a large potential field around the
pedestrian’s current location to reflect the randomness
in the pedestrian’s future positions. Otherwise, we con-
struct a segment of the pedestrian’s most likely path and
put a potential field over this path segment. Essentially,
Cped(x, y) approximates the probabilty that a pedestrian
and the vehicle collides at (x, y), marginalized over time
and vehicle trajectories.

• The last component Csm(ρ, i) is the discrete path curva-
ture of ρ at (xi, yi), suitably scaled to match the range
of values with other components.

To search for a minimum-cost path, we apply the hybrid
A∗ algorithm [18]. The search state is (x, y, θ), which
encodes the vehicle position and orientation. The search
action is (`,∆θ), which takes the vehicle from (x, y, θ) to
a new state (x + ` cos θ, y + ` sin θ, θ + ∆θ). To guide the
search, the heuristic function calculates the distance to drive
from the current state to the goal, assuming no obstacles
in between. One unique feature of the hybrid A∗ algorithm
is that it maintains both the exact continuous state (x, y, θ)
and a discretized version of it. This representation allows us
to generate “drivable” paths that satisfy the nonholonomic
constraint of a car while ensuring computational efficiency.

After finding a minimum-cost path ρ∗, the planner uses the
first segment from (x0, y0) to (x1, y1) of ρ∗ to calculate the
desired vehicle orientation and the steering angle required to
achieve it. It then sends the steering angle to the vehicle for
execution and send ρ∗ to the speed planner.

VI. BELIEF TRACKING

From the observed pedestrian movements, the belief
tracker infers the intention of each pedestrian, which are the
key partially observable variables in our system. Since num-
ber of intentions are finite, the belief over all the intentions
form a discrete probability distribution. The belief tracker
updates the belief with new observations using the Bayes’
rule (1). For each pedestrian, we observe thier movement
from (x, y) to (x′, y′). The belief b(g) is then updated
using the pedestrian model: b′(g) = ηp(x′, y′|x, y, v, g)b(g),
where η is a normolizing factor, and p(x′, y′|x, y, v, g) is the
pedestrian model spcified in Section IV-B.

The change of pedestrian’s intention can be captured by
the belief tracker. When a pedestrian switches from goal g1
to g2, the belief b(g1) will decrease while b(g2) will increase.
To increase the robustness on handling intention changes, we
add a small smoothing factor so that we always have b(g) >
0 for every g. This capability of handling intention changes
is demostrated in our experimental results in Section VII-B.

Currently we do not have a probabilistic dynamic model
of pedestrian speed change and cannot perform Bayesian
tracking. Instead, we use the more primitive method of
exponentially weighted average speed to track the pedestrian
speed, based on the history of observed pedestrian positions.

VII. IMPLEMENTATION AND EXPERIMENTS

A. The Experimental Vehicle
Our test vehicle is a YAMAHA G22E golf cart retrofitted

for autonomous driving. The low-level vehicle controller
controls the throttle, brake, and steering. The sensors include
a SICK LMS 291 LIDAR, a camera, wheel encoders, and
an inertia measurement unit (IMU). The LIDAR has a range
of 30 meters and a field-of-view of 180◦. The camera is an
inexpensive off-the-shelf web camera.

Our autonomous driving system is based on the Robot
Operating System (ROS). The vehicle localizes itself in
the given map, using the adaptive Monte-Carlo localization
algorithm [19], which integrates data from the LIDAR, wheel
encoders, and IMU. The vehicle controller regulates vehicle
steering by tracking a given path with pure pursuit control [9]
and regulates vehicle speed with PID control.

The system detects and tracks pedestrians using a combi-
nation of LIDAR and camera data. It clusters LIDAR point
clouds to identify candidates and then uses HOG features
from camera images to verify the candidates. More details
on the system implementation are available in [3].

Our system, including path planning, online POMDP
planning, belief tracking, and people tracking, all run in
parallel on a single computer with a 4-core Intel processor.
It performs path planning at about 2 Hz and performs online
POMDP planning at strictly 3 Hz. For safety, the vehicle
drives at the maximum speed of 1.5 m/s and triggers emer-
gency brake when a pedestrian gets within 0.5 m.

B. Results on the Autonomous Golf Cart
We carried out experiments on our university campus in a

plaza area about 70 m× 60 m in size (Fig. 6). It is a popular
spot with large crowds of people passing by. We built a map
of the environment from LIDAR data.



(a) (b) (c) (d) (e)
Fig. 5. The vehicle encounters a pedestrian who stops to make a phone call. Histograms indicate beliefs over pedestrian intentions. See Fig. 6 for color
codes. The colored dots indicate vehicle actions: green for ACCELERATE, yellow for MAINTAIN, and red for DECELERATE.

Fig. 6. A top-down view of the plaza area
with a map built from LIDAR data. “A”–“F”
indicate pedestrian intentions. The blue and
the orange lines roughly correspond to the
vehicle and the pedestrian paths, respectively,
for the test run in Fig. 5.

Pedestrian intentions are modeled as goal locations (“A”–
“E” in Fig. 6), which correspond to entrances to office
buildings, shops, restaurants, etc., as well as a bus stop.

The path planner uses a discretized cost map with resolu-
tion 0.1 m. There are 37 search actions with ` = 0.6 m and
∆θ ranging from −18◦ to 18◦ at 1◦ intervals.

The POMDP speed planner tracks a maximum of six
nearest pedestrians for planning, in order to balance between
decision quality and computational efficiency. It takes in
discretized observations with resolution of 0.5 m for position
and 0.03 m/s for speed. Even this moderate setup results in a
huge number of observations, about 1031, but our DESPOT
algorithm handles it well. The actions ACCELERATE, MAIN-
TAIN, and DECELERATE are 0.5 m/s2, 0 m/s2, and −0.5 m/s2,
respectively. The planning horizon is 90 steps. The maximum
planning time per step is 1/3 s.

We conducted extensive tests in this environment. With
limited space, we report some instances here for illustration.
For more details, see the video in the supplementary mate-
rials or online at http://youtu.be/jdkzV0lu2Bc.

In the first instance, the vehicle interacts with a single
pedestrian (Fig. 5). Initially the vehicle starts up, and the
pedestrian walks towards most likely D or E (Fig. 5a).
The pedestrian then changes his intention. He slows down
and eventually stops to make a phone call (Fig. 5b–d).
Observe the change in the belief in the embedded histograms:
the probabilities of D and E decrease, and the probability
of F (pedestrian standing still) increases. In Fig. 5d, the
probability of F has already risen to be the highest. The
vehicle, however, chooses to decelerate, instead of accelerat-
ing to pass the pedestrian. Why? The residue uncertainty of
intention estimation is still substantial, and the consequence
of choosing a wrong action is severe. The vehicle must hedge
against this uncertainty. This is exactly the reason given at
the beginning of Section III. Finally, the vehicle is confident
of the pedestrian intention to stand still and thus accelerates
to pass him (Fig. 5e). This test also clearly demonstrates our
system’s ability to handle changing pedestrian intentions.

In the second instance, the vehicle drives amongst a crowd
of almost 30 pedestrians (Fig. 7). Here understanding pedes-
trian intentions is important for driving safety and efficiency.

TABLE I
COMPARISON OF POMDP PLANNING AND REACTIVE CONTROL.

Risk Time (s) Total Acceleration (m/s2)
POMDP 0.0043± 0.0013 38.57± 0.16 6.31± 0.03
Reactive 0.0192± 0.0021 48.43± 0.27 7.85± 0.03

In Fig. 7a, the vehicle decelerates as several pedestrians
intend to cross its path. In contrast, there are just as many
pedestrians nearby in Fig. 7b, but they intend to walk
away from the vehicle path. The vehicle thus maintains its
speed. At another time (Fig. 7c), the pedestrians are mostly
distributed in the lower-right side of the environment. The
path planner replans a path going through a less congested
region in order to reach the destination faster. See the video
for more on path replanning.

C. Results in Simulation
The golf cart experiments indicate that the planner per-

forms well in a crowded, dynamic environment. However,
it remains difficult to quantify the performance benefits of
our POMDP-based planner over simpler alternatives, because
it is not possible to repeat the same dynamic environment
exactly and evaluate multiple approaches. We thus performed
a preliminary simulation study to compare our planner and
a simple reactive controller.

We implemented our simulator to match up the setting in
Section VII-B as closely as possible. The simulator is also
based on ROS. It uses Stage [23] to simulate the vehicle
dynamics and uses the same environment map. It simulates
pedestrian motions by playing back data recorded in the
plaza. This improves the accuracy of pedestrian simulation
in some aspects, e.g., by capturing the interactions among
multiple pedestrians in a crowd. However, the potential
downside is that these simulated pedestrians do not react to
vehicle movements. This is not a major issue, as we do not
model pedestrian reaction in the POMDP or take advantage
of it in planning.

We compare our POMDP speed planner with a simple
reactive controller, which is the default policy in Section IV-
C. in more than 10, 000 trials. In this comparison, all the
other system components, including, in particular, the path
planner and the belief tracker are identical. This directly
quantifies the benefits of the more powerful, but more ex-
pensive POMDP planner. The results are reported in Table I.
The second column of the table shows the risk, which is the
fraction of near misses. A near miss occurs when the vehicle
gets within 0.5 m of a pedestrian, with speed greater than
1.0 m/s. The third column is the average time for the vehicle
to reach the destination. The last column is the average total

http://youtu.be/jdkzV0lu2Bc


(a) (b) (c)
Fig. 7. The vehicle drives amongst a dense pedestrian crowd. The dashed blue line indicates the planned path. Each figurine indicates a pedestrian
detected. The six pedestrians closest to the vehicle are tracked for the planning purpose, and the colors of their corresponding figurines indicate their
most likely intentions. Each histogram on the lower right of a subfigure indicates the belief over the intentions of a tracked pedestrian. The last subfigure
contains no histograms, as the pedestrians are all far away and not tracked.

acceleration, which measures driving smoothness. Excessive
acceleration or deceleration causes passenger discomfort.
The total acceleration for each trial is the sum of the absolute
values of all speed changes over time.

The result in Table I clearly shows that compared with
the reactive controller, our POMDP-based planner enables
driving that is safer, faster, and more smooth. Of course,
this simple reactive controller uses a very weak model
for decision making. See [1] for comparison of POMDP
planning with other stronger, but still greedy approaches.

VIII. CONCLUSION

This paper presents an intention-aware online POMDP
planner for autonomous driving among many pedestrians.
Experiments show that our planner runs in almost real time
on a golf cart and enables effective autonomous driving in a
complex, dynamic environment. These experiments provide
two important lessons. First, a principled decision framework
such as the POMDP is essential for safe, efficient, and
smooth autonomous driving. Second, despite the concern
about the complexity of POMDP planning, it is improving
fast in computational efficiency and becoming increasingly
practical as a tool for robot planning under uncertainty.
However, we need to understand better the gap in decision
quality between POMDP planning and its greedier and
faster alternatives, in the context of autonomous vehicles
interacting with pedestrians or other vehicles.
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