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Abstract
Point-based algorithms have been surprisingly successful in computing approx-
imately optimal solutions for partially observable Markov decision processes
(POMDPs) in high dimensional belief spaces. In this work, we seek to understand
the belief-space properties that allow some POMDP problems to be approximated
efficiently and thus help to explain the point-based algorithms’ success often ob-
served in the experiments. We show that an approximately optimal POMDP so-
lution can be computed in time polynomial in the covering number of a reachable
belief space, which is the subset of the belief space reachable from a given belief
point. We also show that under the weaker condition of having a small covering
number for an optimal reachable space, which is the subset of the belief space
reachable under an optimal policy, computing an approximately optimal solution
is NP-hard. However, given a suitable set of points that “cover” an optimal reach-
able space well, an approximate solution can be computed in polynomial time.
The covering number highlights several interesting properties that reduce the com-
plexity of POMDP planning in practice, e.g., fully observed state variables, beliefs
with sparse support, smooth beliefs, and circulant state-transition matrices.

1 Introduction

Computing an optimal policy for a partially observable Markov decision process (POMDP) is an
intractable problem [10, 9]. Intuitively, the intractability is due to the “curse of dimensionality”:
the belief space B used in solving a POMDP typically has dimensionality equal to |S|, the number
of states in the POMDP, and therefore the size of B grows exponentially with |S|. As a result, the
number of states is often used in practice as an important measure of the complexity of POMDP
planning. However, in recent years, point-based POMDP algorithms have made impressive progress
in computing approximate solutions by sampling the belief space: POMDPs with hundreds of states
have been solved in a matter of seconds [14, 4]. It seems surprising that even an approximate
solution can be obtained in seconds in a space of hundreds of dimensions. Thus, we would like to
investigate why these point-based algorithms work well, whether there are sub-classes of POMDPs
that are computationally easier, and whether there are alternative measures that better capture the
complexity of POMDP planning for point-based algorithms.
Our work is motivated by a benchmark problem called Tag [11], in which a robot needs to search
and tag a moving target that tends to move away from it. The environment is modeled as a grid.
The robot’s position is fully observable. The target’s position is not observable, i.e., unknown to
the robot, unless the target is in the same grid position as the robot. The joint state of the robot
and target positions is thus only partially observable. The problem has 870 states in total, resulting
in a belief space of 870 dimensions. Tag was introduced in the work on Point-Based Value Itera-
tion (PBVI) [11], one of the first point-based POMDP algorithms. At the time, it was among the
largest POMDP problems ever attempted and was considered a challenge for fast, scalable POMDP
algorithms [11]. Surprisingly, only two years later, another point-based algorithm [14] computed an
approximate solution to Tag, a problem with an 870-dimensional belief space, in less than a minute!
One important feature that underlies the success of many point-based algorithms is that they only
explore a subsetR(b0) ⊆ B, usually called the reachable space from b0. The reachable spaceR(b0)
contains all points reachable from a given initial belief point b0 ∈ B under arbitrary sequences of
actions and observations. One may then speculate that the reason for point-based algorithms’ good
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performance on Tag is that its reachable space R(b0) has much lower dimensionality than B. This
is, however, not true. By checking the dimensionality of a large set of points sampled from R(b0),
we have found that the dimensionality of R(b0) is at least 860 and thus almost as large as B.
In this paper, we propose to use the covering number as an alternative measure of the complexity
of POMDP planning ( Section 4). Intuitively, the covering number of a space is the minimum
number of given size balls that needed to cover the space fully. We show that an approximately
optimal POMDP solution can be computed in time polynomial in the covering number of R(b0).
The covering number also reveals that the belief space for Tag behaves more like the union of
some 29-dimensional spaces rather than an 870-dimensional space, as the robot’s position is fully
observed. Therefore, Tag is probably not as hard as it was thought to be, and the covering number
captures the complexity of the Tag problem better than the dimensionality of the belief space (the
number of states) or the dimensionality of the reachable space.
We further ask whether it is possible to compute an approximate solution efficiently under the weaker
condition of having a small covering number for an optimal reachable R∗(b0), which contains only
points in B reachable from b0 under an optimal policy. Unfortunately, we can show that this problem
is NP-hard. The problem remains NP-hard, even if the optimal policies have a compact piecewise-
linear representation using α-vectors. However, we can also show that given a suitable set of points
that “cover” R∗(b0) well, a good approximate solution can be computed in polynomial time. To-
gether, the negative and the positive results indicate that using sampling to approximate an optimal
reachable space, and not just the reachable space, may be a promising approach in practice. We have
already obtained initial experimental evidence that supports this idea. Through careful sampling and
pruning, our new point-based algorithm solved the Tag problem in less than 5 seconds [4].
The covering number highlights several properties that reduce the complexity of POMDP planning
in practice, and it helps to quantify their effects (Section 5). Highly informative observations usually
result in beliefs with sparse support and substantially reduce the covering number. For example, fully
observed state variables reduce the covering number by a doubly exponential factor. Interestingly,
smooth beliefs, usually a result of imperfect actions and uninformative observations, also reduce
the covering number. In addition, state-transition matrices with special structures, such as circulant
matrices [1], restrict the space of reachable beliefs and reduce the covering number correspondingly.

2 Related Works

POMDPs provide a principled mathematical framework for planning and decision-making under
uncertainty [13, 5], but they are notoriously hard to solve [10, 7, 9, 8]. It has been shown that finding
an optimal policy over the entire belief space for a finite-horizon POMDP is PSPACE-complete [10]
and that finding an optimal policy over an infinite horizon is undecidable [9].
As a result, there has been a lot of work on computing approximate POMDP solutions [2], including
a number of point-based POMDP algorithms [16, 11, 15, 14, 3]. Some point-based algorithms were
able to compute reasonably good policies for very large POMDPs with hundreds of thousands states.
The success of these algorithms motivated us to try to understand why and when they work well.
The approximation errors of some point-based algorithms have been analyzed [11, 14], but these
analyses do not address the general question of when an approximately optimal policy can be com-
puted efficiently in polynomial time. We provide both positive and negative results showing the
difficulty of computing approximate POMDP solutions. The proof techniques used for Theorems 1
and 2 are similar to those used for analyzing an approximation algorithm for large (fully observable)
MDPs [6]. Polynomial time algorithms are not provided in [6]: it appears that additional assump-
tions such as those made in this paper are required for polynomial time results. Our hardness result
is closely related to that for finite-horizon POMDPs [8], but we give a direct reduction from the
Hamiltonian cycle problem.

3 Preliminaries

A POMDP models an agent taking a sequence of actions under uncertainty to maximize its total
reward. Formally it is specified as a tuple (S,A, O, T , Z, R, γ), where S is a set of discrete states,
A is a finite set of actions, and O is a set of discrete observations. At each time step, the agent
takes some action a ∈ A and moves from a start state s to an end state s′. The end state s′ is
given by a state-transition function T (s, a, s′) = p(s′|s, a), which gives the probability that the
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agent lies in s′, after taking action a in state s. The agent then makes an observation to gather
information on its current state. The outcome of observing o ∈ O is given by an observation
function Z(s, a, o) = p(o|s, a) for s ∈ S and a ∈ A. The reward function R gives the agent a
real-valued reward R(s, a) if it takes action a in state s, and the goal of the agent is to maximize
its expected total reward by choosing a suitable sequence of actions. In this paper, we consider
only infinite-horizon POMDPs with discounted reward. Thus, the expected total reward is given by
E[
∑∞

t=0 γtR(st, at)], where γ ∈ (0, 1) is a discount factor, and st and at denote the agent’s state
and the action at time t.
Since the agent’s state is only partially observable, we rely on the concept of a belief, which is
simply a probability distribution over S, represented disretely as a vector.
A POMDP solution is a policy π that specifies the action π(b) for every belief b. Our goal is to find
an optimal policy π∗ that maximizes the expected total reward. A policy π induces a value function
V π that specifies the value V π(b) of every belief b under π. It is known that V ∗, the value function
associated the optimal policy π∗, can be approximated arbitrarily closely by a convex, piecewise-
linear function V (b) = maxα∈Γ(α · b), where Γ is a finite set of vectors called α-vectors.
The optimal value function V ∗ satisfies the following Lipschitz condition:

Lemma 1 For any two belief points b and b′, if ||b− b′|| ≤ δ, then |V ∗(b)− V ∗(b′)| ≤ Rmax
1−γ δ.

a1 a2

z1 z2

b0

Figure 1: The belief tree rooted at b0.

Throughout this paper, we always use the l1 metric
to measure the distance between belief points: for
b, b′ ∈ Rd, ||b − b′|| =

∑d
i=1 |bi − b′i|. The Lips-

chitz condition bounds the change of a value func-
tion using the distance between belief points. It pro-
vides the basis for approximating the value at a be-
lief point by the values of other belief points nearby.
To find an approximately optimal policy, point-
based algorithms explore only the reachable belief
space R(b0) from a given initial belief point b0.
Strictly speaking, these algorithms compute only a
policy overR(b0), rather than the entire belief space
B. We can view the exploration of R(b0) as searching a belief tree TR rooted at b0 (Figure 1). The
nodes of TR correspond to beliefs in R(b0). The edges correspond to actions-observation pairs.
Suppose that a child node b′ is connected to its parent b by an edge (a, z). We can compute b′

using the formula b′(s′) = τ(b, a, z) = ηZ(s′, a, z)
∑

s T (s, a, s′)b(s), where η is a normalizing
constant. After obtaining enough belief points from R(b0), point-based algorithms perform backup
operations over them to compute an approximately optimal value function.

4 The Covering Number and the Complexity of POMDP Planning

Our first goal is to show that if the covering number of a reachable space R(b0) is small, then an
approximately optimal policy in R(b0) can be computed efficiently. We start with the definition of
the covering number:
Definition 1 Given a metric space X , a δ-cover of a set B ⊆ X is a set of point C ⊆ X such that
for every point b ∈ B, there is a point c ∈ C with ||b − c|| < δ. If all the points in C also lie in
B, then we say that C is a proper cover of B. The δ-covering number of B, denoted by C(δ), is the
size of the smallest δ-cover of B.

Intuitively, the covering number is equal to the minimum number of balls of radius δ needed to cover
the set B. A closely related notion is that of the packing number:
Definition 2 Given a metric space X , a δ-packing of a set B ⊆ X is a set of points P ⊆ B such
that for any two points p1, p2 ∈ P , ||p1 − p2|| ≥ δ. The δ-packing number of a set B, denoted by
P(δ), is the size of the largest δ-packing of B.

For any set B, the following relationship holds between packing and covering numbers.
Lemma 2 C(δ) ≤ P(δ) ≤ C(δ/2).
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We are now ready to state our first main result. It shows that for any point b0 ∈ B, if the covering
number of R(b0) grows polynomially with the parameters of interest, then a good approximation of
the value at b0 can be computed in polynomial time.
Theorem 1 For any b0 ∈ B, let C(δ) be the δ-covering number ofR(b0). Given any constant ε > 0,
an approximation V (b0) of V ∗(b0), with error |V ∗(b0)− V (b0)| ≤ ε, can be found in time

O

(
C
(

(1− γ)2ε
4γRmax

)2

logγ

(1− γ)ε
2Rmax

)
.

Proof. To prove the result, we give an algorithm that computes the required approximation. It
performs a depth-first search on a depth-bounded belief tree and uses approximate memorization to
avoid unnecessarily computing the values of very similar beliefs. Intuitively, to achieve a polynomial
time algorithm, we bound the height of the tree by exploiting the discount factor and bound the width
of the tree by exploiting the covering number.
We perform the depth-first search recursively on a belief tree TR that has root b0 and height h, while
maintaining a δ-packing of R(b0) at every level of TR. Suppose that the search encounters a new
belief node b at level i of TR. If b is within a distance δ of a point b′ in the current packing at level i,
we set V (b) = V (b′), abort the recursion at b, and backtrack. Otherwise, we recursively search the
children of b. When the search returns, we perform a backup operation to compute V (b) and add b
to the packing at level i. If b is a leaf node of TR, we set V (b) = 0. We build a separate packing at
each level of TR, as each level has a different approximation error.
We now calculate the values for h and δ required to achieve the given approximation bound ε at b0.
Let εi = |V ∗(b)−V (b)| denote the approximation error for a node b at level i of TR, if the recursive
search continues in the children of b. By convention, the leaf nodes are at level 0. Similarly, let ε′i
denote the error for b, if the search aborts at b and V (b) = V (b′) for some b′ in the packing at level
i. Hence,

ε′i = |V ∗(b)− V (b′)|
≤ |V ∗(b)− V ∗(b′)|+ |V ∗(b′)− V (b′)|

≤ Rmax

1− γ
δ + εi,

where the last inequality uses Lemma 1 and the definition of εi. Clearly, ε0 ≤ Rmax/(1 − γ). To
calculate εi for a node b at level i, we establish a recurrence. The children of b, which are at level
i− 1, have error at most ε′i−1. Since a backup operation is performed at b, we have εi ≤ γε′i−1 and
thus the recurrence εi ≤ γ(εi−1 + Rmax

1−γ δ). Expanding the recurrence, we find that the error εh at
the root b0 is given by

|V ∗(b0)− V (b0)| ≤ γRmax(1− γh)
(1− γ)2

δ + γh Rmax

1− γ

≤ γRmax

(1− γ)2
δ + γh Rmax

1− γ
.

By setting δ = (1−γ)2ε
2γRmax

and h = logγ
(1−γ)ε
2Rmax

, we can guarantee |V ∗(b0)− V (b0)| ≤ ε.

We now work out the running time of the algorithm. For each node b in the packings, the algorithm
expands it by calculating the beliefs and the corresponding values for all its children and performing
a backup operation at b to compute V (b). It takes O(|S|2) time to calculate the belief at a child
node. We then perform a nearest neighbor search in O(P(δ)|S|) time to check whether the child
node lies within a distance δ of any point in the packing at that level. Since b has |A||O| children,
the expansion operation takes O(|A||O||S|(|S|+ P(δ)) time. The backup operation then computes
V (b) as an average of its children’s values, weighted by the probabilities specified by the observation
function, and takes only O(|A||O|) time. Since there are h packings of size P(δ) each and by
Lemma 2, P(δ) ≤ C(δ/2), the total running time of our algorithm is given by

O (hC(δ/2)|A||O||S|(|S|+ C(δ/2))) .

We assume that |S|, |A|, and |O| are constant to focus on the dependency on the covering number,
and the above expression then becomes O(hC(δ/2)2). Substituting in the values for h and δ, we get
the final result. 2
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The algorithm in the above proof can be used on-line to choose an approximately optimal action at
b0. We first estimate the values for all the child nodes of b0 and then select the action resulting in
the highest value. Suppose that at each belief point reachable from b0, we perform such an on-line
search for action selection. Using the technique in [12], one can show that if the value function
approximations at all the child nodes have error at most ε, then the policy π implicitly defined by
the on-line search has approximation error |V ∗(b)− V π(b)| ≤ 2γε/(1− γ) for all b in R(b0).
Instead of performing the on-line search, one may want to precompute an approximately optimal
value function over R(b0) and perform one-step look-ahead on it at runtime for action selection.
The algorithm in Theorem 1 is not sufficient for this purpose, as it samples only enough points from
R(b0) to give a good value estimate at b0, but the sampled points do not form a cover of R(b0). One
possibility would be to find a cover of R(b0) first and then apply PBVI [11] over the points in the
cover. Unfortunately, we do not know how to find a cover of R(b0) efficiently. Instead, we give a
randomized algorithm that computes an approximately optimal value function with high probability.
Roughly, this algorithm builds a packing of R(b0) incrementally. It first runs the algorithm in
Theorem 1 to obtain an initial packing P and estimate the values of belief points in P . To test
whether the current packing P covers R(b0) well, it then runs a set of simulations of a fixed size. If
the simulations encounter new points not covered by P , we estimate their values and add them to P
to form a new packing P ′. The process repeats until no more new belief points are discovered within
a set of simulation. We show that if the set of simulations is sufficiently large, then the probability
that we encounter new belief points not covered by the final packing in any future run of the policy
can be made arbitrarily small.
Theorem 2 For any b0 ∈ B, let C(δ) be the δ-covering number ofR(b0). Given constants β ∈ (0, 1)
and ε > 0, a randomized algorithm can compute, with probability at least 1− β, an approximately
optimal value function in time

O

(
Rmax

(1− γ)ε

(
C
(

(1− γ)3ε
16γRmax

)
logγ

(1− γ)ε
4Rmax

)2

log
(

1
β
C
(

(1− γ)3ε
16γRmax

)
logγ

(1− γ)ε
4Rmax

))
.

such that the one-step look-ahead policy π induced by this value function has error |V ∗(b0) −
V π(b0)| ≤ ε. It takes O

(
C
(

(1−γ)3ε
16γRmax

))
time to use this value function to select an action at

runtime.

Both theorems above assume tha a small covering number of R(b0) for efficient computation. To
relax this assumption, we may require only that the covering number for an optimal reachable space
R∗(b0) is small, as R∗(b0) contains only points reachable under an optimal policy and can be much
smaller than R(b0). Unfortunately, under the relaxed condition, approximating the value at b0 is
NP-hard. We prove this by reduction from the Hamiltonian cycle problem. The main idea is to
show that a Hamiltonian cycle exists in a given graph if and only an approximation to V ∗(b0), with
a suitably chosen error, can be computed for a POMDP whose optimal reachable space R∗(b0) has
a small covering number. The result is closely related to one for finite-horizon POMDPs [8].
Theorem 3 Given constant ε > 0, computing an approximation V (b0) of V ∗(b0), with error
|V (b0) − V ∗(b0)| ≤ ε|V ∗(b0)|, is NP-hard, even if the covering number of R∗(b0) is polynomial-
sized.

The result above assumes the standard encoding of POMDP input with state-transition functions,
observation functions, and reward functions all represented discretely by matrices of suitable sizes.
By slightly extending the proof of Theorem 3, we can also show a related hardness result, which
assumes that the optimal policy has a compact representation.
Theorem 4 Given constant ε > 0, computing an approximation V (b0) of V ∗(b0), with error
|V (b0)−V ∗(b0)| ≤ ε|V ∗(b0)|, is NP-hard, even if the number of α-vectors required to represent an
optimal policy is polynomial-sized.

On the other hand, if an oracle provides us a proper cover of an optimal reachable space R∗(b0),
then a good approximation of V ∗(b0) can be found efficiently.
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Theorem 5 For any b0 ∈ B, given constant ε > 0 and a proper δ-cover C of R∗(b0) with δ =
(1−γ)2ε
2γRmax

, an approximation V (b0) of V ∗(b0), with error |V ∗(b0)− V (b0)| ≤ ε, can be found in time

O

(
|C|2 + |C| logγ

(1− γ)ε
2RMax

)
.

Together, the negative and the positive results (Theorems 3 to 5) indicate that a key difficulty for
point-based algorithms lies in finding a cover for R∗(b0). In practice, to overcome the difficulty,
one may use problem-specific knowledge or heuristics to approximate R∗(b0) through sampling.
Most point-based POMDP algorithms [11, 15, 14] interpolate the value function using α-vectors.
Although we use the nearest neighbor approximation to simplify the proofs of Theorems 1, 2, and
5, we want to point out that very similar results can be obtained using the α-vector representation if
we slightly modify the analysis of the approximation errors in the proofs.

5 Bounding the Covering Number

The covering number highlights several properties that reduce the complexity of POMDP planning
in practice. We describe them below and show how they affect the covering number.

5.1 Fully Observed State Variables

Suppose that there are d state variables, each of which has at most k possible values. If d′ of these
variables are fully observed, then for every such belief point, its vector representation contains at
most m = kd−d′ non-zero elements out of kd elements in total. For a given initial belief b0, the
belief vectors with the same non-zero pattern form a subspace inR(b0), andR(b0) is a union of these
subspaces. We can compute a δ-cover for each subspace by discretizing each non-zero element of
the belief vectors to an accuracy of δ/m, and the size of the resulting δ-cover is at most (m

δ )m. There

are kd′ such subspaces. So the δ-covering number of R(b0) is at most kd′(m
δ )m = kd′(kd−d′

δ )kd−d′

.
The fully observed variables thus give a doubly exponential reduction in the covering number: it
reduces the exponent by a factor of kd′ at the cost of a multiplicative factor of kd′ .
Proposition 1 Suppose that a POMDP has d state variables, each of which has at most k possible
values. If d′ state variables are fully observed, then for any belief point b0, the δ-covering number
of the reachable belief space R(b0) is at most kd′(kd−d′

δ )kd−d′

.

Consider again the Tag problem described in Section 1. The state consists of both the robot’s and
the target’s positions, as well as the status indicating whether the target is tagged. The robot and
the target can occupy any position in an environment modeled as a grid of 29 cells. If the robot has
the target tagged, they must be in the same position. So, there are 29 × 29 + 29 = 870 states in
total, and the belief space B is 870-dimensional. However, the robot’s position is fully observed. By
Proposition 1, the δ-covering number is at most 30 · (30/δ)30. Indeed, for Tag, any reachable belief
space R(b0) is effectively a union of two sets. One set corresponds to the case when the target is
not tagged and consists of the union of 29 sub-spaces of 29 dimensions. The other set corresponds
to the case when the target is tagged and consists of exactly 29 points. Clearly, the covering number
captures the underlying complexity of R(b0) more accurately than the dimensionality of R(b0).

5.2 Sparse Beliefs

Highly informative observations often result in sparse beliefs, i.e., beliefs whose vector representa-
tion is sparse. For example, in the Tag problem, the state is known exactly if the robot and the target
are in the same position, leaving only a single non-zero element in the belief vector. Fully observed
state variables usually result in very sparse beliefs and can be considered a special case.
If the beliefs are always sparse, we can exploit the sparsity to bound the covering number. Otherwise,
sparsity may still give a hint that the covering number is smaller than what would be suggested by
the dimensionality of the belief space. By exploiting the non-zeros patterns of belief vectors in a
way similar to that in Section 5.1, we can derive the following result:
Proposition 2 Let B be a set in an n-dimensional belief space. If every belief in B can be
represented as a vector with at most m non-zero elements, then the δ-covering number of B is
O(nm

(
m
δ

)m).
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5.3 Smooth Beliefs

Sparse beliefs are often peaky. Interestingly, when the beliefs are sufficiently smooth, e.g., when
their Fourier representations are sparse, the covering number is also small. Below we give a more
general result, assuming that the beliefs can be represented as a linear combination of a small number
of basis vectors.
Proposition 3 Let B be a set in an n-dimensional belief space. Assume that every belief b ∈ B
can be represented as a linear combination of m basis vectors such that the magnitudes of both the
elements of the basis vectors and the coefficients representing b are bounded by a constant C. The δ-
covering number of B is O(( 2C2mn

δ )m) when the basis vectors are real-valued, and O(( 4C2mn
δ )2m)

when they are complex-valued.

Smooth beliefs are usually a result of actions with high uncertainty and uninformative observations.

5.4 Circulant State-Transition Matrices

Let us now shift our attention from observations to actions, in particular, actions that can be rep-
resented by state-transition matrices with special structures. We start with an example. A mobile
robot scout needs to navigate from a known start position to a goal position in a large environment
modeled as a grid. It must not enter certain danger zones to avoid detection by enemies. The robot
can take four actions to move in the {N,S,E,W} directions, but have imperfect control. Since
the environment is large, we assume that the robot always operates far away from the boundary and
the boundary effect can be ignored. At each grid cell, the robot moves to the intended cell with
probability 1−p and moves diagonally to the two cells adjacent to the intended one with probability
0.5p. The robot can use its sensors to make highly accurate observations on its current position, but
by doing so, it runs the risk of being detected.
Under our assumptions, the state-transition functions representing robot actions are invariant over
the grid cells and can thus be represented by circulant matrices [1]. Circulant matrices are widely
used in signal processing and control theory, as they can represent all discrete-time linear translation-
invariant systems. In the context of POMDPs, if applying a state-transition matrix to a belief b
corresponds to convolution with a suitable distribution, then the state-transition matrix is circulant.
One of the key properties of circulant matrices is that they all share the same eigenvectors. Therefore,
we can multiply them in any arbitrary order and obtain the same result. In our example, this means
that given a set of robot moves, we can apply them in any order and the resulting belief on the robot’s
position is the same. This greatly reduces the number of possible beliefs and correspondingly the
covering number in open-loop POMDPs, where there are no observations involved.
Proposition 4 Suppose that all ` state-transition matrices representing actions are circulant and
that each matrix has at most m eigenvalues whose magnitudes are greater than ζ, with 0 < ζ < 1.
In an open-loop POMDP, for any point b0 in an n-dimensional belief space, the δ-covering number
of the reachable belief space R(b0) is O

((
8`mn

δ

)2`m
+ h`

)
, where h = logζ(δ/2n).

In our example, suppose that the robot scout makes a sequences of moves and needs to decide when
to take occasional observations along the way to localize itself. To bound the covering number, we
divide the sequence of moves into subsequences such that each subsequence starts with an observa-
tion and ends right before the next observation. In each subsequence, the robot starts at a specific
belief and moves without additional observations. So, within a subsequence, the beliefs encountered
have a δ-cover of size O((8`mn/δ)2`m + h`) by Proposition 4. Furthermore, since all the observa-
tions are highly informative, we assume that the initial beliefs of all subsequences can be represented
as vectors with at most m′ non-zero elements. The set of all initial beliefs then has a δ-cover of size
O(nm′

(m′/δ)m′
) by Proposition 2. From Lemma 3 below, we know that in an open-loop POMDP,

two belief trajectories can only get closer to each other, as they progress.
Lemma 3 Let M be a Markov matrix and ||b1 − b2|| ≤ δ. Then ||Mb1 −Mb2|| ≤ δ.

Therefore, to get a δ-cover of the space R(b0) that the robot scout can reach from a given b0, it
suffices to first compute a δ/2-cover C of the initial belief points for all possible subsequences
of moves and then take the union of the δ/2-covers of the belief points traversed by the subse-
quences whose initial belief points lie in C. The δ-cover of R(b0) then has its size bounded by
O(nm′

(2m′/δ)m′
(16`mn/δ)2`m + h`), where h = logζ(δ/4n).
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The requirement of translation invariance means that circulant matrices have some limitations in
modeling certain phenomena well. In mobile robot navigation, obstacles or boundaries in the envi-
ronment often cause difficulties. However, if the environment is sufficiently large and the obstacles
are sparse, the behaviors of some systems can be approximated by circulant matrices.

6 Conclusion

We propose the covering number as a measure of the complexity of POMDP planning. We believe
that for point-based algorithms, the covering number captures the difficulty of computing approxi-
mate solutions to POMDPs better than other commonly used measures, such as the number of states.
The covering number highlights several interesting properties that reduce the complexity of POMDP
planning, and quantifies their effects. Using the covering number, we have shown several results that
help to identify the main difficulty of POMDP planning using point-based algorithms. These results
indicate that a promising approach in practice is to approximate an optimal reachable space through
sampling. We are currently exploring this idea and have already obtained promising initial results
[4]. On a set of standard test problems, our new point-based algorithm outperformed the fastest
existing point-based algorithm by 5 to 10 times on some problems, while remaining competitive on
others.
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POMDPs. This work is supported in part by NUS ARF grants R-252-000-240-112 and R-252-000-243-112.
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A Proofs

Proof. (Lemma 1)
The value function associated the optimal policy π∗, can be approximated arbitrarily closely by a
convex and piecewise-linear function V (b) = maxα∈Γ(α ·b), where Γ is a finite set of vectors called
α-vectors. The absolute values of the α-vector coefficients are no more than Rmax/(1−γ). We first
assume the value function has such a representation.
Let V (b) = α · b and V (b′) = α′ · b′. Let bc = ab + (1− a)b′ be a point between b and b′ such that
α · bc = α′ · bc. Such a point always exists as α · b ≥ α′ · b and α′ · b′ ≥ α · b′.

|V (b)− V (b′)| = |α · b− α′ · b′|
= |α · b− α · bc + α′ · bc − α′ · b′|
= |α · (1− a)(b− b′) + α′ · a(b− b′)|
= |((1− a)α + aα′) · (b− b′)|

≤ Rmax

1− γ
||b− b′||

=
Rmax

1− γ
δ.

As the approximation can be made arbitrarily close to V ∗ using more α-vectors, the result also holds
for the optimal value function. 2

Proof. (Lemma 2)
Consider an δ-packing P of size P(δ). By definition, it is not possible to add another point x to
P with distance greater or equal to δ from every point in P . Hence the packing P also gives an
δ-covering, giving the first inequality.
Now consider any δ-packing P ′. Any point in an δ/2-cover can cover at most one point in P ′.
Hence the size of an δ/2-cover must be at least the size of P ′, giving the second inequality. 2

Proof. (Theorem 2)
First we find the value of the policy generated by the value function assuming that every point we
meet is within δ of a point in the cover at the appropriate level. The proof uses the value function
generated in Theorem 1 in addition to some of the ideas in [12]. We proceed by induction on the
height of the tree. We keep track of two values εi which bounds the error of the value function
estimate for a point at height i and επ

i which is the error of the policy run from height i. From the
proof of Theorem 1, the error at any point within a distance δ of a cover point can be bounded by

εi ≤
Rmax

(1− γ)2
δ + γi Rmax

1− γ
.

For a tree of height zero, any policy will have error bounded by επ
0 ≤ 2Rmax/(1 − γ). Consider

taking greedy action a at b, the root of a tree of height i+1, using the estimated value function. This
means that

Eb[R(s, a′)] + γ
∑
b′

p(b′|a′)V (b′) ≤ Eb[R(s, a)] + γ
∑
b′

p(b′|a)V (b′)

for optimal action a′. We also have V ∗(b′)− εi ≤ V (b′) ≤ V ∗(b′) + εi, giving

Eb[R(s, a′)] + γ
∑
b′

p(b′|a′)(V ∗(b′)− εi) ≤ Eb[R(s, a)] + γ
∑
b′

p(b′|a)(V ∗(b′) + εi).

This gives

Eb[R(s, a′)]− Eb[R(s, a)] ≤ 2γεi + γ
∑
b′

[p(b′|a)V ∗(b′)− p(b′|a′)V ∗(b′)]. (1)

Let V π
i be the value of the policy at height i. The error

επ
i+1 = Eb[R(s, a′)]− Eb[R(s, a)] + γ

∑
b′

[p(b′|a′)V ∗(b′)− p(b′|a)V π
i (b′)]

9



Substituting equation (1), we get

επ
i+1 ≤ 2γεi + γ

∑
b′

[p(b′|a)V ∗(b′)− p(b′|a′)V ∗(b′) + p(b′|a′)V ∗(b′)− p(b′|a)V π
i (b′)]

≤ 2γεi + γ
∑
b′

[p(b′|a)[V ∗(b′)− V π
i (b′)]

≤ 2γεi + γ
∑
b′

p(b′|a)επ
i .

Expanding the recurrence, we get

επ
h ≤ 2

h−1∑
i=0

γh−iεi + 2γh Rmax

1− γ

≤ 2
h−1∑
i=0

γh−i

(
Rmax

(1− γ)2
δ + γi Rmax

1− γ

)
+ 2γh Rmax

1− γ

≤ 2
γRmax

(1− γ)3
δ + 2hγh Rmax

1− γ
+ 2γh Rmax

1− γ

≤ 2
γRmax

(1− γ)3
δ + 2(h + 1)γh Rmax

1− γ
.

We set επ
h to be no more than ε/2 by setting both components of the right hand side to ε/4. Setting

h = K logγ
ε(1−γ)
4Rmax

for some constant K and δ = (1−γ)3ε
8γRmax

is sufficient.

First we run the algorithm in Theorem 1 with the calculated values of h and δ. On completion,
we run a testing phase where we run m simulations where we use one-step look-ahead with the
estimated value function to select the appropriate actions. In the simulations, we run the algorithm
in Theorem 1 to the appropriate depth whenever a point not within distance δ from any point in the
cover at that level is discovered. This point is then added to the cover. We only need to do this
at most KC

(
(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

times until no new points are discovered in a set of simulation
runs.
We now work out the number of simulations m that needs to be run at each stage to ensure that
the error is small enough with high probability. With probability at least 1 − β, we want a policy
that encounters a belief not covered in the packings in at most a ζ fraction of simulations. We now
bound the value of such a policy. On a single simulation run, any policy has total discounted reward
of at least −Rmax/(1 − γ). Let r be the a function that gives the total discounted reward of runs
using the value function that never encounters points far from the covers as described earlier. Let
g be a function that takes the same value as r on simulation runs that does not encounter points far
from the covers and −Rmax/(1 − γ) otherwise. Let h be a function that takes the same value as
r on simulation runs that encounter points far from the covers is zero otherwise. Assume that we
have a policy that encounters points not covered in at most a ζ fraction of simulations. The expected
reward is at least Eg. This is the same as Eg + Eh − Eh ≥ Er − 2ζRmax/(1 − γ). Setting
2ζRmax/(1−γ) = ε/2 gives us a policy with error no more than ε. This gives ζ = (1−γ)ε/4Rmax.
We call a simulation that encounters a belief that is not covered in the packings a bad simula-
tion. From Chernoff bound, the probability we do not find a bad simulation in m′ trials, when the
probability of a bad simulation is at least ζ, is no more than exp(−ζm′/8). Since we might poten-
tially run KC

(
(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

sets of simulations, we would like the probability of failure
(asserting that the current packing is adequate when it actually is not) for a single set to be no
more than β/KC

(
(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

. Setting exp(−ζm′/8) = β/KC
(

(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

gives m′ = 8
ζ log

(
1
β KC

(
(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

)
. Substituting for ζ gives m′ =

32Rmax
(1−γ)ε log

(
1
β KC

(
(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

)
. Each simulation takes O

(
C
(

(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

)
time and we are running at most O

(
C
(

(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

)
sets, so the total running time in run-
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ning simulations is O

(
Rmax

(1−γ)ε

(
C
(

(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

)2

log
(

1
βC
(

(1−γ)3ε
16γRmax

)
logγ

ε(1−γ)
4Rmax

))
which dominates the time to construct the packings. 2

Proof. (Theorem 3)
Given a Hamiltonian cycle problem, we construct a polynomial time reduction to an open-loop
POMDP with a small cover for the space reachable under an optimal policy.
The problem is to find a shortest path through a graph that ensures that a randomly placed target on
the vertices is found. From the original graph for the Hamiltonian cycle problem with n vertices,
construct the graph using the same set of vertices. Each vertex is reachable from any other vertex
with cost c if there is an edge between them in the original graph and cost 2c if there is no edge in the
original graph. A target is located with uniform probability on one of the vertices. Two additional
vertices are added: a source S and a sink T . The cost of moving from S is constructed by selecting
an arbitrary vertex v and duplicating the cost of moving from v to the other vertices. The sink T
is reachable only from v with cost zero. The searcher starts from the source and always knows
its location exactly. When it moves from v to T it receives a reward R if it had passed a vertex
containing the target on its path there and zero reward otherwise. The vertex T is an absorbing state
and the searcher stays there forever with no cost upon reaching it. The number of states is at most
2n(n + 2): each possible combination of searcher and target location together with whether the
target has been discovered.
Assume that a Hamiltonian cycle exists. Consider traversing along a Hamiltonian cycle as a policy
(starting at S and ending at T , then staying at T thereafter). The discounted reward is γnR. The
expected cost is

∑n−1
i=0 cγi = c(1−γn)

1−γ giving a total expected reward of V ∗ = γnR − c(1−γn)
1−γ .

Setting R to be c(1−γn)
γn(1−γ) + 1

γn gives a total expected discounted reward of 1 which is better than any
policy that does not reach T .
We now argue that this policy is optimal among those that reaches T . We also choose parameter
values such that there is a gap between the value of the cases and V ∗ of value at least 1. We consider
the three possible cases:

• If the number of vertices visited is greater than n, then the value of the policy will be at least
cγn poorer than V ∗. Setting c = 1/γn, the policy will be poorer by at least 1 compared to
V ∗.

• If exactly n distinct node are visited but an edge not in the original graph is taken, then the
cost will be at least cγn−1 more. The value c = 1/γn is also sufficient for the gap to be at
least 1.

• Otherwise, consider the case where m ≤ n vertices are visited but only m′ < n are distinct.
Visiting an additional unvisited vertex can cost at most 3c more and will gain an additional
expected reward of (m′+1)

n γm+1R− m′

n γmR. Setting γ > 1/2 and to at least 1− 1
4n gives

an additional expected reward of at least γm+1R
4n2 . Setting R to be at least 4n2(1+3c)

γn+1 will
ensure that such policies will be be poorer by at least 1 compared to V ∗.

Hence a path based on a Hamiltonian cycle is optimal.
Now assume that a Hamiltonian cycle does not exists. The optimal policy can only be one of the
three cases above and hence must have value poorer by at least 1 compared to V ∗.
Hence, to find out whether a Hamiltonian cycle exists, we only need to find the optimal value to
accuracy better than 0.5 and check whether it is within 0.5 of V ∗. By setting 1/γ appropriately
(O(21/n)), R and c can be made to be polynomial in n. The size of the representation and running
time for the reduction are polynomial with respect to n, showing that the problem is NP-hard. Fur-
thermore any optimal policy is a path, so the size of the space reachable under an optimal policy is
O(n). 2

Proof. (Theorem 4)
The proof follows the proof of Theorem 3. In addition, we observe that retaining at most one α-
vector for each point of the path is sufficient to obtain the correct value and at each node along
the path. As the searcher position is distinct for each of these nodes, it is possible to perturb the
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α-vectors slightly in case of ties so that the correct actions are also encoded by the same α-vectors.
2

Proof. (Theorem 5)
The algorithm does h iterations of backups on the cover points inside the proper cover C. We assume
the initial belief b0 is in the cover, otherwise, we just add it in. In each iteration i, for each point cj

inside C, we backup its value as:

Vi(cj) = max
a

(
∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z

P (z|a, b)Vi−1(τ(b, a, z))),

where at each b′ = τ(b, a, z). If the distance between b′ and its nearest neighbor c′ inside C is less
than δ, we approximate its value as Vi−1(b′) = Vi−1(c′). Otherwise, we set Vi−1(b′) = −∞.
We first show that introducing value −∞ into the algorithm gives the correct behavior. If the value
of a belief b was set to −∞ because it is too far from any point in the cover C, it means that b is
not in the space reachable under the optimal policy. Thus, any action which can lead to b can be
discarded in the first place. Also, as all cover points given in C are inside the optimal reachable
space, there is at least one action for each cover point, whose value is not set to −∞.
We use similar induction on the iterations as in Theorem 1. At iteration 0, we set the values to zero,
giving a error that is bounded by ε0 ≤ Rmax/(1 − γ). Let the error at the points in the cover at
iteration i be εi. Consider taking action a at iteration i+1. By induction, the error at a child node in
the backup operation is bounded by εi if the recursion does not terminate there. Otherwise we have:

|V ∗(b′)− V (c′)| = |V ∗(b′)− V ∗(c′) + V ∗(c′)− V (c′)|
≤ |V ∗(b′)− V ∗(c′)|+ |V ∗(c′)− V (c′)|

≤ RMax

1− γ
δ + εi,

where the last line uses Lemma 1 and the induction hypothesis.

Thus, εi+1 ≤ γ(RMax

1−γ δ + εi). Expanding the recurrence, we find that the error at b0 at iteration t is

|V (b0)− V ∗(b0)| ≤
γRMax

(1− γ)2
δ + γh RMax

1− γ
.

In order to have error less than ε, we set γRMax

(1−γ)2 δ = ε/2 and γh RMax

1−γ = ε/2. Thus, setting h =

logγ
ε(1−γ)
2RMax

, and δ = (1−γ)2ε
2γRMax

is sufficient. We now work out the computational complexity of the
algorithm. As we are doing backups on a fixed set of points, nearest neighbor computations and
belief propagations only need to be carried out once, with O(|A||O||C|(|C| + |S|2)). During each
iteration, we need to do backup computation for each cover point, with O(|A|(|S|+ |O|)|C|). Thus,
total running time is

O(|A||O||C|(|C|+ |S|2) + t|A|(|S|+ |O|)|C|),

where

h = logγ

ε(1− γ)
2RMax

2

Proof. (Proposition 3)
Consider the real-valued case. Assume that we have m coefficients and the basis functions and
coefficients have have magnitude bounded by C. Discretizing the coefficients to accuracy δ/Cmn,

we have a cover of size O
((

2C2mn
δ

)m)
in the coefficient space. Let g be the actual coefficient

vector and g′ be the closest coefficient vector in the cover. Arrange the basis function into a matrix
M such that the belief is calculated as b = Mg. Let c = g − g′ and Mi be the i-th column of M .
Then

||Mg −Mg′|| = ||Mc||
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= ||
m∑

i=1

ciMi||

≤
m∑

i=1

||ciMi||

≤
m∑

i=1

|ci|||Mi||

≤ Cn
m∑

i=1

|ci|

≤ Cnm
δ

Cnm
= δ.

Complex valued coefficients and basis functions can be bounded using similar techniques by dis-
cretizing both the real and imaginary components, resulting in the same bound with a value m that
is twice as large. 2

Proof. (Proposition 4)
A circulant matrix A can be expressed as UDU∗ where each column of U is an eigenvector of
A formed from the Fourier bases, D is diagonal consisting of the eigenvalues of A and U∗ is the
conjugate transpose of U with UU∗ = U∗U = I . One key property of circulant matrices is that
all of them share the same eigenvectors. This property is useful for bounding the covering number
in POMDP when observations are not present (open-loop POMDP). Assume that we have ` actions
corresponding to matrices A1, . . . , A`. Without observations, the result of a sequence of h actions
can be written as the following transition matrix

A1A2 · · ·Ah = UD1U∗UD2U∗ · · ·UDhU∗

= UD1D2 . . . DhU∗.

One interesting property is that this is permutation invariant and depends only on the number of
each type of action taken. This means that only O(h`) distinct beliefs can be created from a single
starting point using h or fewer actions.
Eigenvalues of transition matrices have magnitude 1 or less. If each transition matrix has no more
than m eigenvalues with magnitude greater than ζ, after h steps, no more than `m eigenvalues will
have magnitude greater than ζh. The Fourier coefficients of a probability distribution has magnitude
no more than 1. This means that no more than `m eigenvalues of the final belief will have magnitude
more than ζh. Setting this to δ/2n requires h = logζ(δ/2n). We decompose every function into
the sum of two functions: one with small coefficients and one with large coefficients. As the basis
function of the inverse Fourier transform has magnitude no more than 1/n, the function with small
coefficients has magnitude no more than δ/2n. Summing the real part over n dimensions, this gives
an l1 norm smaller than δ/2. By Proposition 3, we can obtain an δ/2-cover of the functions with
large coefficients of size O

((
8`mn

δ

)2`m
)

. As the functions with small coefficients have l1 norm
smaller than δ/2, this cover is also an δ-cover of the sum of the functions with small and large
coefficients. Adding in the functions created before the h-th step, we can obtain a cover of size
O
((

8`mn
δ

)2`m
+ h`

)
where h = logζ(δ/2n). 2

Proof. (Lemma 3)
Let c = b1 − b2 and Mi be the i-th column of M . Then

||Mb1 −Mb2|| = ||Mc||
= ||

∑
i

ciMi||

≤
∑

i

||ciMi||
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≤
∑

i

|ci|||Mi||

=
∑

i

|ci|

≤ δ.

2
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