
SARSOP: Efficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces

Hanna Kurniawati David Hsu Wee Sun Lee
Department of Computer Science, National University of Singapore

Singapore 117590, Singapore

IN Proc. Robotics: Science & Systems, 2008

Abstract— Motion planning in uncertain and dynamic environ-
ments is an essential capability for autonomous robots. Partially
observable Markov decision processes (POMDPs) provide a
principled mathematical framework for solving such problems,
but they are often avoided in robotics due to high computational
complexity. Our goal is to create practical POMDP algorithms
and software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief spaces to improve com-
putational efficiency. In simulation, we successfully applied the
algorithm to a set of common robotic tasks, including instances
of coastal navigation, grasping, mobile robot exploration, and
target tracking, all modeled as POMDPs with a large number
of states. In most of the instances studied, our algorithm
substantially outperformed one of the fastest existing point-based
algorithms. A software package implementing our algorithm
will soon be released at http://motion.comp.nus.edu.sg/
projects/pomdp/pomdp.html.

I. INTRODUCTION

Partially observable Markov decision processes (POMDPs)
[17] provide a principled mathematical framework for plan-
ning under uncertainty, an essential capability for robots
operating in uncertain and dynamic environments. However,
POMDPs are often avoided in robotics, because solving
POMDPs exactly is computationally intractable [9]. Not long
ago, the best algorithms could spend hours computing exact
solutions to POMDPs with only a dozen states, which are
woefully inadequate for modeling realistic robotic tasks. In
recent years, point-based POMDP algorithms [5, 10, 16,
19, 20] have made impressive progress by computing good
approximate solutions: POMDPs with hundreds of states have
been solved in a matter of seconds (e.g., [5, 16, 19]). These
algorithms have the potential to make POMDPs practical for
many applications in robotics and beyond.

Our goal is to create practical POMDP algorithms and
software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief spaces to improve
computational efficiency. In simulation, we successfully ap-
plied our algorithm to a set of common robotic tasks, including
coastal navigation, grasping, mobile robot exploration, and
target tracking, all modeled as POMDPs with a large number
of states.

POMDP algorithms typically operate in a robot’s belief
space. A belief is a probability distribution over all possible
robot states, and the set of all beliefs form the belief space.
Intuitively, the difficulty of solving POMDPs is due to the
“curse of dimensionality”: in a discrete POMDP, the belief
space B has dimensionality equal to |S|, the number of robot

b0

B

R(b0)
R∗(b0)

Fig. 1. Belief space B, reachable space R(b0), and optimally reachable
space R∗(b0). Note that R∗(b0) ⊆ R(b0) ⊆ B.

states. The size of B thus grows exponentially with |S|.
Consider, for example, robot navigation in a simple planar
environment modeled as a 10 × 10 grid. The resulting belief
space is 100-dimensional!

To overcome this difficulty, one key idea of point-based
POMDP algorithms is to sample a set of points from B
and use it as an approximate representation of B, instead
of representing B exactly. Some early POMDP algorithms
sample the entire belief space B, using a uniform sampling
distribution, such as a grid. However, it is difficult to sample
a representative set of points from B, due to its large size. More
recent point-based algorithms sample only R(b0), the subset
of belief points reachable from a given initial point b0 ∈ B,
under arbitrary sequences of actions (Fig. 1). It is generally
believed that R(b0) is much smaller than B. Indeed, focusing
on R(b0) allows point-based algorithms to scale up to larger
problems. To push further in this direction, we would like to
sample near R∗(b0), the subset of belief points reachable from
b0 under optimal sequences of actions, as R∗(b0) is usually
much smaller than R(b0). Of course, the optimal sequences
of actions constitute exactly the POMDP solution, which is
unknown in advance. In fact, knowingR∗(b0) is in some sense
“equivalent” to knowing the POMDP solution (see Section III-
A). So we need to approximate R∗(b0).

The main idea of our algorithm is to compute successive
approximations of R∗(b0) and converge to it iteratively. Since
R∗(b0) is unknown in advance, the algorithm relies on heuris-
tic exploration to sample R(b0) and improves sampling over
time through a simple on-line learning technique. It then uses
a bounding technique to avoid sampling in regions that are
unlikely to be optimal and focus sampling on the region near
R∗(b0), the subset of B most relevant to the POMDP solution.
This leads to substantial gain in computational efficiency.

Focusing on R∗(b0) also brings an indirect benefit. Under
fairly general conditions, the solution to a POMDP can be
represented as a convex, piecewise-linear value function [17].

We represent the value function as a set Γ of hyperplanes, each
of which must dominate the rest at some sampled point. By
pruning away sampled points that are suboptimal, i.e., outside
R∗(b0), we can reduce the size of Γ, thus further improving
computational efficiency.

II. BACKGROUND

A. POMDPs

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its reward. Formally it is
specified as a tuple (S,A,O, T , Z, R, γ), where S is a set
of states, A is a set of actions, and O is a set of observations.

In each time step, the agent lies in some state s ∈ S; it takes
some action a ∈ A and moves from s to a new state s′. Due
to the uncertainty in action, the end state s′ is modeled as a
conditional probability function T (s, a, s′) = p(s′|s, a), which
gives the probability that the agent lies in s′, after taking action
a in state s. The agent then makes an observation to gather
information on its state. Due to the uncertainty in observation,
the observation result o ∈ O is again modeled as a conditional
probability function Z(s, a, o) = p(o|s, a).

In each step, the agent receives a real-valued reward R(s, a),
if it takes action a in state s, and the goal of the agent is to
maximize its expected total reward by choosing a suitable se-
quence of actions. For infinite-horizon POMDPs, the sequence
of actions has infinite length. We specify a discount factor
γ ∈ [0, 1) so that the total reward is finite and the problem is
well defined. In this case, the expected total reward is given
by E [

∑∞
t=0 γtR(st, at)], where st and at denote the agent’s

state and action at time t.
The solution to a POMDP is an optimal policy that maxi-

mizes the expected total reward. Normally, a policy is a map-
ping from the agent’s state to a prescribed action. However,
in a POMDP, the agent’s state is partially observable and
not known exactly. So we rely on the concept of beliefs. As
described earlier, a belief is a probability distribution over S. A
POMDP policy π:B → A maps a belief b ∈ B to a prescribed
action a ∈ A.

A policy π induces a value function V π(b) that specifies
the expected total reward of executing policy π starting from
b. It is known that V ∗, the value function associated with the
optimal policy π∗, can be approximated arbitrarily closely by
a convex, piecewise-linear function

V (b) = max
α∈Γ

(α · b),

where Γ is a finite set of vectors called α-vectors, b is the
discrete vector representation of a belief, and α · b is the inner
product of vectors α-vector and b. Each α-vector is associated
with an action. The policy can be executed by selecting the
action corresponding to the best α-vector at the current belief.
So a policy can be represented as a set of α-vectors.

B. Related Work

POMDPs are a principled approach for planning and deci-
sion making under uncertainty [6, 17], but they are notoriously
hard to solve [7, 9]. There have been significant efforts in

developing approximation algorithms. See [1] for a recent
survey.

Point-based algorithms have been particularly successful
in computing approximate solutions to large POMDPs [2,
5, 10, 16, 19, 20]. Most of them use value iteration [13].
Exploiting the fact that the optimal value function must satisfy
the Bellman equation [13], value iteration algorithms start with
an initial policy represented as a value function V and perform
backup operations on V by iterating on the Bellman equation
until the iteration converges. One important idea shared by
the point-based algorithms is to sample a representative set of
points from the belief space B and compute an approximately
optimal value function by performing backup operations over
the sampled points rather than the entire B. They differ
in how they sample the belief space and perform backup
operations. To improve computational efficiency, recent point-
based algorithms sample only the reachable space R(b0) from
an initial belief point b0.

PBVI [10] is the first point-based algorithm that demon-
strated good performance on a large POMDP called Tag,
which has 870 states. Later point-based algorithms im-
proved the performance significantly on this and other larger
POMDPs. To our knowledge, HSVI2 [19] so far has the
best performance in general. HSVI2 uses heuristics to guide
the sampling towards regions that help cut down the gap
between the upper and lower bounds on the optimal value
function. FSVI [16] is another point-based algorithm, which
uses a Markov decision process (MDP) to guide the sampling.
MDP-guided sampling is effective for some problems, but
the performance degrades when uncertainty is high and long
sequences of information-gathering actions are required.

Our algorithm is related to HSVI2 and FSVI, but it explicitly
attempts to sample the optimally reachable space R∗(b0)
through learning-enhanced exploration and a bounding tech-
nique. Experimental results show that focusing on R∗(b0)
is a promising idea. An early version of our algorithm [5]
exploits bounding in a limited way: bounds are compared
locally at individual belief points to prune suboptimal actions.
In contrast, the current algorithm sets up the bounds to reach
a specified value function approximation level at b0, thereby
leveraging information globally to reduce the number of poor
samples—those that are in R(b0) but not in R∗(b0).

One crucial reason for the computational intractability of
POMDPs is the high dimensionality of B. Low-dimensional
approximations of B therefore improve computational effi-
ciency greatly (e.g., [12, 14]). These approaches are important,
but beyond the scope of this paper.

III. SARSOP

We now describe our algorithm, SARSOP, which stands
for Successive Approximations of the Reachable Space under
Optimal Policies.

A. Optimally Reachable Spaces

A key idea of point-based POMDP algorithms is to sample
a representative set of points from the belief space and

Algorithm 1 SARSOP.
1: Initialize the set Γ of α-vectors, representing the lower

bound V on the optimal value function V ∗. Initialize the
upper bound V on V ∗.

2: Insert the initial belief point b0 as the root of the tree TR.
3: repeat
4: SAMPLE(TR, Γ).
5: Choose a subset of nodes from TR. For each chosen

node b, BACKUP(TR,Γ, b).
6: PRUNE(TR, Γ).
7: until termination conditions are satisfied.
8: return Γ.

use it as an approximate representation of the space. For
efficiency, most recent algorithms sample from R(b0), the
set of points reachable from a given point b0 ∈ B under
arbitrary sequences of actions. Theoretical analysis shows that
approximate POMDPs solutions can be computed efficiently,
when R(b0) has a small covering number [4]. Informally, the
δ-covering number C(δ) of a set S is the minimum number of
balls of radius δ needed to cover S. So it is a measure of the
“volume” of S.

Theorem 1: For any b0 ∈ B, let C(δ) be the δ-covering
number of R(b0). Given any constant ε > 0, an approximation
V (b0) of V ∗(b0), with error |V ∗(b0) − V (b0)| ≤ ε, can be
found in time

O

(
C
(

(1− γ)2ε
4γRmax

)2

logγ

(1− γ)ε
2Rmax

)
.

However, for many realistic robotics tasks, the assumption
of small R(b0) may not hold. We would like our algorithm
to do well when R(b0) may be large, but Rπ∗(b0), the
space reachable under an optimal policy π∗, is small. As
Rπ∗(b0) is often much smaller than R(b0), the assumption
of small Rπ∗(b0) is more likely to hold. Unfortunately, this
relaxed assumption is too weak, and the problem of comput-
ing approximate POMDP solutions remains hard, despite the
assumption [4].

Theorem 2: Let b0 be any point in B and π∗ be an optimal
policy. Given a constant ε > 0, computing an approximation
V (b0) of V ∗(b0), with error |V (b0) − V ∗(b0)| ≤ ε|V ∗(b0)|,
is NP-hard, even if the covering number of Rπ∗(b0) is
polynomial-sized.
On the other hand, if we are given a set of balls of radius δ
that covers Rπ∗(b0), the problem becomes much easier [4].
We call the set C, which contains the centers of this set of
balls, a δ-cover of Rπ∗(b0).

Theorem 3: For any b0 ∈ B and any optimal policy π∗,
given a proper δ-cover C of Rπ∗(b0) with δ = (1−γ)2ε

2γRmax
, an

approximation V (b0) of V ∗(b0), with error |V ∗(b0)−V (b0)| ≤
ε, can be found in time

O

(
|C|2 + |C| logγ

(1− γ)ε
2Rmax

)
,

where |C| is the size of C and Rmax = maxs,a |R(s, a)| is
the maximum one-step reward.

b0

a1 a2

o1 o2

Fig. 2. The belief tree TR rooted at b0.

Together, Theorems 2 and 3 say that computing approximate
POMDP solutions is hard, but the problem becomes much
easier, if a proper δ-cover of Rπ∗(b0) is given. It follows that
the key difficulty must lie in computing such a cover. Once
the cover is obtained, we can find an approximate POMDP
solution in time polynomial in the cover size. So, instead of
following the common approaches of directly approximating
V ∗ or searching for π∗, our SARSOP algorithm focuses on
finding an approximate cover of Rπ∗(b0) through sampling.

Since there may be multiple optimal policies, SARSOP aims
to sample R∗(b0) =

⋃
π∗ Rπ∗(b0), the union of all optimally

reachable spaces.
In the following, to simplify the notations, we omit the

argument b0 in R(b0) and R∗(b0). It is understood that R
and R∗ are reachable from a given initial point b0.

B. Overview of the Algorithm

SARSOP iterates over three main functions, SAMPLE,
BACKUP, and PRUNE. A sketch is shown in Algorithm 1.

Like all point-based algorithm, SARSOP samples a set of
points from the belief space. The sampled points form a tree
TR (Fig. 2). Each node of TR represents a sampled point. As
there is no confusion, we use the same symbol b to denote
both a sampled point and its corresponding node in TR. The
root of TR is the initial belief point b0. To sample a new
point b′, we pick a node b from TR as well as an action
a ∈ A and an observation o ∈ O according to suitable
probability distributions or heuristics. We then compute b′

using the formula

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s

T (s, a, s′)b(s),

where η is a normalization constant, and insert b′ into TR as a
child of b. Clearly, every point sampled this way is reachable
from b0. If we apply all possible sequences of actions and
observations, the set of nodes in TR is exactly R. The key is,
of course, to avoid doing so and focus the sampling, instead,
on R∗.

To achieve this, SARSOP maintains both a lower bound V
and an upper bound V on the optimal value function V ∗. The
set Γ of α-vectors represents a piecewise-linear approximation
to V ∗ (Section II-A), and is also a lower bound when suitably
initialized, using, e.g., a fixed-action policy [1]. For the upper
bound V , SARSOP uses the sawtooth approximation [1]. The
upper bound can be initialized in various ways, using the MDP
or the Fast Informed Bound technique [1]. SARSOP uses the

Algorithm 2 Perform α-vector backup at a node b of TR.
BACKUP(TR, Γ, b)

1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ(α · τ(b, a, o)).
2: For all a ∈ A, s ∈ S,

αa(s)← R(s, a) + γ
∑

o,s′ T (s, a, s′)Z(s′, a, o)αa,o(s′).
3: α′ ← argmaxa∈A(αa · b)
4: Insert α′ into Γ.

upper and the lower bounds to bias sampling towards R∗ (
(see Section III-C).

Next, we perform backup at selected nodes in TR. A backup
operation at a node b collates the information in the children
of b and propagates it back to b. We perform the standard α-
vector backup (Algorithm 2), with the value function approxi-
mation represented as a set Γ of α-vectors. The value function
approximation at b, obtained from the α-vector backup, is the
same as that from the Bellman backup. However, the Bellman
backup propagates only the value, while the α-vector backup
propagates the gradient of the value function approximation
along with the value to obtain a global approximation over
the entire belief space rather than a local approximation at b.

Invocation of SAMPLE and BACKUP generates new sampled
points and α-vectors. However, not all of them are useful
for constructing an optimal policy and are pruned to improve
computational efficiency (see Section III-D).

SARSOP is an anytime algorithm that returns the best policy
found within a pre-specified amount of time. It gradually
reduces the gap ε between the upper and lower bounds on
the value function at b0, until it reaches either a pre-specified
gap size or the time limit.

C. Sampling

The NP-hardness result described in Section III-A suggests
that sampling from R∗ is hard. We use heuristics and infor-
mation gathered from earlier samples to guide the sampling
and improve the sampling distribution over time. Furthermore,
by using value function bounds, we try to avoid sampling in
regions that are unlikely to be reachable under any optimal
policy, i.e., outside ofR∗. See Algorithm 3 for the pseudocode.

To sample new belief points, SARSOP sets a target gap size
ε between the upper and lower bound at the root b0 of TR and
traverses a single path down TR by choosing at each node the
action with the highest upper bound and the observation that
makes the largest contribution to the gap at the root of TR.
This is the same action and observation selection strategy used
in HSVI2 [19]. The sampling path is terminated under suitable
conditions. Together, the strategies for action and observation
selection and the choice of termination conditions control the
resulting sampling distribution.

One termination condition is to stop when the sampling
path reaches a node whose gap between the upper and lower
bounds is smaller than γ−tε, where t is the depth of the node
in TR [19]. If each leaf of TR has a gap smaller than γ−tε,
the gap at the root is guaranteed to be smaller than ε. This
condition, although reasonable, is inadequate. As the target
gap ε at the root gets smaller, the sampling path must traverse

deeper down the tree. As we go down the tree, the set of points
in R increases much faster than the set of points in R∗, and
it becomes increasingly difficult to sample from R∗. To focus
sampling nearR∗ and minimize sampling inR\R∗, we would
like to make the sampling path as shallow as possible while
still achieving the target gap ε at the root of TR. A potential
dilemma here is that some nodes with high expected rewards
lie deep in the tree, and we must allow the sampling path to
go deep enough in order to reach them.

a) Selective deep sampling: As each backup operation
chooses the action that maximizes the expected reward, im-
provements in lower bounds are quickly propagated to the root
when nodes with high expected rewards are found. This not
only directly improves the policy but also provides information
to stop sampling more quickly in regions that are likely outside
R∗. In contrast, upper bounds cannot be propagated beyond a
node until the upper bounds for all the actions at the node are
sufficiently improved. Finding the best action is not enough.
Thus we give preference to lower bound improvements and
continue down a sampling path beyond the node with a gap of
γ−tε, if we predict that doing so likely leads to improvement
in the lower bound at the root.

To make such a predication, conceptually we predict the
optimum value V ∗(b) at a node b and propagate the predicted
value V̂ up towards the root. If V̂ improves the lower bound
at the root, we expand b and then repeat the procedure at the
next selected node down the sampling path. Otherwise, we
proceed to check the gap termination criterion described in
the next subsection.

To predict the optimal value V ∗(b), we use a simple learning
technique. We cluster beliefs according to suitable features and
use previously computed values of beliefs in the same cluster
as b to predict the value of b. This allows us to learn which
parts of the belief space is worth exploring. Currently, we use
the initial upper bound and the entropy of b as the features
and discretize the belief space into a finite number of bins
according to these two features. The average value of beliefs
in a bin is used as the prediction for the value of any new
belief falling into the bin. If a bin is empty, the initial upper
bound of the new belief is used as its predicted value.

To implement this idea efficiently, we do not actually
propagate the predicted value V̂ back to the root. Instead,
we pass a lower-bound target level L down the sampling path.
The predicted value V̂ is checked against L. If V̂ fails to
meet the target L at a node b, the lower bound at b will not
be propagated further up towards the root of TR.

Let us now consider how to pass the target L at a node b to
a child node b′ = τ(b, a, o). First, observe that value function
information is propagated up from b′ to b only if the action a
that takes b to b′ has higher value than all other actions at b.
We thus calculate an intermediate target level L′ for a, which
is set to the maximum over L and the values of all the actions
at b (Algorithm 3, lines 7–8). Next, observe that the lower
bound on the value of action a is

Q(b, a) =
∑

s

R(s, a)b(s) + γ
∑

o

p(o|b, a)V (b′).

Algorithm 3 Sampling near R∗.
SAMPLE(TR, Γ)

1: Set L to the current lower bound on the value function at
the root b0 of TR. Set U to L + ε, where ε is the current
target gap size at b0.

2: SAMPLEPOINTS(TR, Γ, b0, L, U , ε, 1).

SAMPLEPOINTS(TR, Γ, b, L, U , ε, t).
3: Let V̂ be the predicted value of V ∗(b).
4: if V̂ ≤ L and V (b) ≤ max{U, V (b) + εγ−t} then
5: return
6: else
7: Q← maxa Q(b, a).
8: L′ ← max{L,Q}.
9: U ′ ← max{U,Q + γ−tε}.

10: a′ ← arg maxa Q(b, a).
11: o′ ← arg maxo p(o|b, a′)

(
V (τ(b, a′, o))−

V (τ(b, a′, o))).
12: Calculate Lt so that L′ =

∑
s R(s, a′)b(s) +

γ
(
p(o′|b, a′)Lt +

∑
o6=o′ p(o|b, a′)V (τ(b, a′, o))

)
.

13: Calculate Ut so that U ′ =
∑

s R(s, a′)b(s) +
γ
(
p(o′|b, a′)Ut +

∑
o6=o′ p(o|b, a′)V (τ(b, a′, o))

)
.

14: b′ ← τ(b, a′, o′).
15: Insert b′ into TR as a child of b.
16: SAMPLEPOINTS(TR , Γ, b′ , Lt , Ut , ε, t + 1).

Hence the target level for b′ is the value needed for Q(b, a)
to achieve its target L′ (Algorithm 3, line 12).

To guard against misleading predictions that result in un-
necessarily deep samplings paths, we only continue down a
sampling path until the gap between the upper and lower
bounds is κγ−tε for some κ < 1. The κ value is set to 0.5 in
our current implementation.

b) The gap termination criterion: If our prediction shows
no improvement of the lower bound at the root, we use the
target gap size ε at the root to decide whether to terminate
the sampling path and avoid sampling in regions unlikely to
be in R∗. As mentioned earlier, the straightforward way of
achieving the target gap size ε between the upper and lower
bounds at the root of TR is to require a gap size γ−tε for all
leaves of TR. However, it is in fact sufficient to ensure that the
condition is satisfied somewhere along all the paths from the
root to the leaves, rather than at the leaves themselves. This
has the advantage of leveraging information globally from the
other parts of TR to terminate a sampling path as early as
possible and thus improving computational efficiency.

To do this, we pass an upper-bound target level U down
the sampling path as well. For a node b at depth t, we can
terminate sampling if its upper bound is lower than V (b) +
εγ−t or the upper-bound target U passed down from parent of
b. This termination criterion has the same effect as requiring
all leaves to have a gap of no more than εγ−t: if all leaves
in TR meet this termination criterion, the root b0 achieves the

target gap size of ε. The upper-bound target level U can be
passed down a sampling path in a way similar to that for the
lower-bound target level L. See Algorithm 3, lines 9 and 13.

The combination of selective deep sampling and the gap
termination criterion leads to an effective sampling strategy
that goes deep into TR when need. This avoids unnecessarily
sampling in R\R∗ and gives a better approximation to R∗.

D. Pruning

The efficiency of backup operations, which take up a
significant fraction of the total computation time, depends
significantly on the size of the set Γ of α-vectors. To improve
computational efficiency, existing point-based algorithms usu-
ally prune an α-vector from Γ if it is dominated by others over
the entire belief space B. The notion of optimally reachable
space suggests an alternative and more aggressive pruning
technique: ideally, we want to prune an α-vector if it is
dominated by other α-vectors over R∗, rather than B. Since
R∗ is potentially much smaller than B, this may substantially
reduce the size of Γ and improve the efficiency of the backup
operations and thus the overall algorithm.

As R∗ is not known in advance, we use B, the set of all
sampled belief points contained in TR, as an approximation.
To improve this approximation and to keep the size of B small,
we prune from B those points that are provably suboptimal
and do not lie in R∗. For a node b in TR, if Q(b, a) < Q(b, a′)
for two actions a and a′, then we prune all the sampled points
in the subtree resulting from taking action a at b, as an optimal
policy will never take the action a at b and traverse the subtree
underneath. It is possible that some pruned points may turn out
to lie in R∗, as there are other paths in TR to reach them under
an optimal policy. However, the benefits of keeping B small
usually outweighs the loss in the approximation quality due to
over-pruning. These points can also be eventually recovered
from the other paths in TR.

Belief point pruning in turn enables more aggressive α-
vector pruning. In SARSOP, an α-vector is pruned if it is
dominated by others over B. A simple criterion for dominance
is to say that for two α-vectors α1 and α2, α1 dominates α2

at a belief point b if α1 ·b ≥ α2 ·b. However, this is not robust.
The set B is a finitely sampled approximation of R∗. Since
SARSOP computes an approximately optimal policy over B
only, the computed policy may choose an action that causes
it to slightly veer off R∗ and get into a region in which the
value function approximation is poor. To address this issue, we
impose the more stringent requirement of dominance over a δ-
neighborhood: α1 dominates α2 at a belief point b if α1 · b′ ≥
α2 · b′ at every point b′ whose distance to b is less than δ,
for some fixed constant δ. We call this δ-dominance. We can
check δ-dominance very quickly by computing the distance d
from b to the intersection of the hyperplanes represented by α1

and α2 and making sure that d ≥ δ. In the implementation, the
value of δ can be set adaptively according to the effectiveness
of α-vector pruning. A similar idea for α-vector pruning, but
without using the δ-neighborhood, is described in [15].

(a) Underwater Navigation, an
instance of coastal navigation,
shown on a reduced map with
a 11 × 12 grid. “S” marks
the possible initial positions for
the robot. The robot is equally
likely to start in any of these
positions. “D” marks the des-
tinations. “R” marks the rocks.
“O” marks places that the robot
can fully localize itself.

(b) Grasping. A fingered robot
arm grasps a stepped block.
Courtesy of L.P. Kaelbling and
T. Lozano-Pérez.

(c) Integrated Exploration. A robot navigates with an uncertain
map. Areas shaded in black represent obstacles. Areas shaded in
light gray represent (possibly damaged) bridges. “S” marks the start
location for the robot. “D” marks destination locations.

bathroom

target

robot

(d) Homecare. A robot fol-
lows a moving person, the
target. The light blue areas
indicate obstacles. The black
dashed curve indicates the
target’s path. The green area
around the robot indicates the
the robot sensor’ visibility re-
gion. The various shades of
gray show the robot’s belief
of the current target position.

Fig. 3. Some common robotic tasks modeled as POMDPs.

IV. EXPERIMENTS

We have successfully applied SARSOP to a set of distinct
robotic tasks. In this section, we describe these tasks, the
experimental setup, and the results.

A. Robotic Tasks Studied

Uncertainty arises in various ways in robotic systems.
Suppose that the state of a robotic system is given by (xr, xe),
where xr represents the state of the robot and xe represents
the state of the environment. Inaccuracies in robot control and
sensing are the typical causes for uncertainty in xr. They are

almost always present to some degree. Uncertainty in xe, On
the other hand, varies widely. We thus divide the robotic tasks
studied here into three categories according to the uncertainty
in xe. In the first category, the environment is static and known
with high accuracy. So uncertainty in xe can be ignored, and
we only need to consider uncertainty in xr in planning the
robot’s actions. In the second category, the environment is
static, but not known accurately. Thus, we must take into
account the uncertainty in both xr and xe in planning. In the
last category, the environment is not static and changes over
time. We need a dynamic model of the environment and use
it to plan actions for the robot to respond to changes in the
environment.

a) Underwater Navigation: We start with an instance of
the well known coastal navigation problem. An autonomous
underwater vehicle (AUV) navigates in an environment mod-
eled as a 51 × 52 grid map (Fig. 3a). The AUV needs to
navigate from the left border of the map to the right border. It
must avoid rocks scattered near the goals, as they may cause
severe damages to the vehicle. In each step, the AUV can either
stay in the current position or move to any of the four adjacent
positions (directly above, below, left, and right). Due to poor
visibility conditions, the AUV can only localize itself along
the top or bottom borders, where there are beacon signals. The
environment is static and known in advance. So this problem
belongs to the first category.

Roughly, the optimal policy for the AUV is to move
diagonally until it reaches the top or bottom border to localize
itself. It can then safely pass through the rocks and get to
the destinations on the right border. A feature of this problem
is that heuristics assuming full observability (e.g., an MDP
policy) favor shorter horizontal paths rather than diagonal
paths and thus often choose the wrong action.

b) Grasping: This problem was introduced in the work
of Hsiao, Kaelbling, and Lozano-Pérez [3]. As a POMDP, this
problem is similar to coastal navigation: the environment is
static and known, but due to limited sensing capabilities, the
robot has difficulty in determining its own state exactly. It
needs to perform information-gathering actions to reduce the
state uncertainty in order to reach the goal. However, as a
robotic task, grasping has quite different physical character-
istics. Here, a two-dimensional Cartesian robot arm with two
fingers tries to grasp a stepped block on a table (Fig. 3b).
It has only contact sensors at the tip and the sides of each
finger to help determine the state. The robot performs com-
pliant guarded moves (left, right, up, and down) and always
maintains contact with the surface of the block or the boundary
of the environment at the beginning and end of each move.
The goal is to move the robot arm and have its two fingers
straddle the block so that grasping is possible. More details
on this problem can be found in [3].

c) Integrated Exploration: For some tasks, robots must
traverse an area whose map is highly uncertain, for example,
when robots perform SLAM tasks. In this situation, the robot
must gather information to reduce map uncertainty, localize
itself, and navigate to reach the goal. This is sometimes

called integrated exploration [8]. When the environment is
static, integrated exploration belongs to our second category.
Unfortunately, despite a static environment, uncertainty in the
environment map causes the number of states for xe to grow
exponentially. Recall further that increase in the number of
states in turn causes the belief space size to grow expo-
nentially. Currently, such doubly exponential growth is too
difficult to manage, even for point-based POMDP algorithms.

Our problem here models a similar, but simplified scenario
(Fig. 3c). In one step, the robot can move from its current
location to one of the eight adjacent locations horizontally,
vertically, and diagonally. The result of a move is uncertain.
The robot can localize itself in several locations scattered
around the environment. To reach the destination, the robot
may follow one of the long routes along the far left and right
sides of the environment or take a shortcut through one of the
bridges (shaded in light gray in Fig. 3c). Due to flood damages,
at most two bridges are still functional. The robot’s goal is to
reach the destination nodes as quickly as possible, using such
an uncertain environment map. Even in this simplified setting,
we still end up with more than 15,000 states.

d) Rock Sample: The Rock Sample problem first ap-
peared in the work on HSVI [18]. In this problem, a rover
explores an area modeled as a small grid and looks for rocks
with scientific value. The rover always knows its own position
exactly, as well as those of the rocks. However, it does not
know which rocks are valuable. The rover can take noisy long-
range sensor readings to gather information on the rocks. The
accuracy of the sensor depends on the distance between the
rover and the rocks. The rover can also sample a rock in the
immediate vicinity. It receives a reward or a penalty, depending
on whether the sampled rock is valuable.

In this problem, the environment is static, and a map with
exact rock positions is available. However, the environment
map that really matters is the one that marks the positions of
valuable rocks. This map is unknown in advance. and the rover
must infer this map from sensor readings. So this problem can
be regarded as an instance of integrated exploration.

e) Tag: The Tag problem first appeared in the work on
PBVI [10]. In Tag, the robot’s goal is to follow a target that
intentionally moves away. The robot and the target operate
in a grid environment with 29 positions in total. In one step,
they can either stay or move one of four adjacent positions
(above, below, left, and right). The robot always knows its own
position, but can observe the target’s position only if they are
in the same position. The robot pays a cost for each move and
receives a reward every time it arrives in the same position
as that of the target. Here, the environment changes over time
due to the target motion. Thus the problem belongs to the third
category.

f) Homecare: This problem models a robot following a
person around at home for caretaking purposes (Fig. 3d). It
is related to Tag, but involves a much larger number of states
and more complex environment dynamics. Imagine that an
elderly person moves around at home. His motion is non-
deterministic: he follows a fixed path (marked as a black

dashed curve in Fig. 3d), but in each time step, he may pause
or proceed along the path with equal probabilities. Along the
path, there is special location representing a bathroom, where
the person may stay for an extended duration. The person has a
call button to call the robot over for help. The call button stays
on for some uncertain duration and then goes off. The robot
gets a reward only if it arrives in time. The robot can observe
the person’s position when they are close enough. Clearly the
robot should stay close to the person in order to track his
position well and improve the chance of receiving rewards. At
the same time, it also wants to minimize movement in order
to reduce power consumption. POMDP provides a principled
way to evaluate such trade-offs.

B. Experimental Setup

We applied SARSOP to the above tasks. For each task,
we first performed long preliminary runs to determine ap-
proximately the reward level for the optimal policies and the
amount of time needed to reach it. We then ran SARSOP for
a maximum of two hours to reach this level and recorded the
resulting policy. To estimate the expected total reward of the
policy, we performed sufficiently large number of simulation
runs until the variance in the estimated value was small. For
comparison, we also ran HSVI2 on these tasks, following the
same procedure. Both algorithms are implemented in C++.
They were compiled with g++ v4.1.2. The experiments were
performed on a PC with a 2.66GHz Intel processor and 2GB
memory. For HSVI2, we used the newest software released by
its original author, zmdp v1.1.3, which is a highly optimized
implementation.

For SARSOP, the δ value for α-vector pruning was set at
1 × 10−2 for the two largest problems, Rock Sample and
Homecare, and 1 × 10−4 for the rest. The performance of
SARSOP is affected by the δ value, but not sensitive to it. One
important consideration in the choice of δ is the dimensionality
of the belief space involved, i.e., the number of states. The
rough guide that we have been using is 1×10−2 for POMDPs
with about 10,000 states or more and 1× 10−4 for those with
substantially fewer states. We are currently implementing an
adaptive technique to set δ automatically and will include it
in the final software release.

C. Results

The results are shown in Table I. Column 2 of the table
lists the estimated expected total rewards for the computed
policies and the 95% confidence intervals. Column 3 lists the
corresponding computation times.

For all six tasks, SARSOP obtained good approximate
solutions within the two-hour limit. In five out of the six
tasks, SARSOP substantially outperformed HSVI2, sometimes
by several times. For two tasks (Integrated Exploration and
Tag), HSVI2 was unable to reach a comparable reward level
as that of SARSOP within the two-hour time limit. Thus, for
these two tasks, we also report the reward level that HSVI2
was able to reach at the end of two hours (Table I).

TABLE I
PERFORMANCE COMPARISON.

Reward Time (s)
Underwater Navigation,
|S|=2,653,|A|=6,|O|=103

SARSOP 722.59± 1.30 72
HSVI2 721.45± 0.75 720
Grasping
|S|=1,253,|A|=6,|O|=96

SARSOP 320.00± 0.16 8
HSVI2 319.88± 0.14 60
Integrated Exploration
|S|=15,517,|A|=8,|O|=1,015

SARSOP (1.58± 0.03)× 106 5,400
HSVI2 (1.41± 0.02)× 106 5,400

(1.43± 0.02)× 106 7,200
Rock Sample (7,8)
|S|=12,545,|A|=13,|O|=2

SARSOP 21.27± 0.13 400
HSVI2 21.27± 0.09 250
Tag
|S|=870,|A|=5,|O|=30

SARSOP −6.13± 0.12 6
HSVI2 −7.43± 0.11 6

−6.40± 0.10 7,200
Homecare
|S|=5,408,|A|=9,|O|=928

SARSOP 16.86± 0.45 960
HSVI2 16.88± 0.37 2,880

On Rock Sample, SARSOP did not perform as well as
HSVI2 for a very specific reason. HSVI2 implements an α-
vector masking technique, which opportunistically computes
only selected entries in the α-vectors. This technique is
particularly beneficial here, because in Rock Sample, the
robot position is fully observed, which substantially reduces
the overall level of uncertainty involved. Furthermore, the
remaining state variables that specify the status of rocks are
independent, which also helps to improve the effectiveness of
masking. Without masking, HSVI2 was only able reach the
reward level of 18.98±0.09 after 400 seconds of computation
time. This is worse than that of SARSOP. The effectiveness of
masking degenerates for uncertain robot movements and noisy
observations, which are the more common case in practice. For
this reason, we currently do not to incorporate masking in our
implementation.

V. CONCLUSION

Point-based algorithms have greatly improved the speed of
POMDP solution by sampling from the reachable space. This
paper presents a new point-based algorithm, SARSOP, which
exploits the notion of optimally reachable spaces to further
improve computational efficiency. We applied SARSOP to a
set of distinct robotic tasks, all modeled as POMDPs with a
large number of states. SARSOP computed good approximate
solutions to all of them in reasonable time. Further, it out-
performed one of the fastest existing point-based algorithm in
most of these tasks. These results indicate that approximating
optimally reachable spaces through sampling is an interesting
new angle to look at the problem. It has led to the more
effective sampling and pruning strategies in SARSOP.

Along with other reports in literature [2, 3, 10, 11, 14, 19],

our results indicate that with the advances in POMDP solution
algorithms, the POMDP approach is gradually becoming prac-
tical for non-trivial robotic tasks. We are currently improving
the implementation of SARSOP and expect to release it soon
as a software package at http://motion.comp.nus.
edu.sg/projects/pomdp/pomdp.html.

Acknowledgements. We thank Yanzhu Du and Xan Huang for
helping with the software implementation. This work is supported
in part by the MoE AcRF grant R-252-000-327-112.

REFERENCES

[1] M. Hauskrecht, “Value-function approximations for partially observable
Markov decision processes,” J. Artificial Intelligence Research, vol. 13,
pp. 33–94, 2000.

[2] J. Hoey, A. von Bertoldi, P. Poupart, and A. Mihailidis, “Assisting
persons with dementia during handwashing using a partially observable
Markov decision process,” in Proc. Int. Conf. on Vision Systems, 2007.

[3] K. Hsiao, L. Kaelbling, and T. Lozano-Pérez, “Grasping POMDPs,” in
Proc. IEEE Int. Conf. on Robotics & Automation, 2007, pp. 4485–4692.

[4] D. Hsu, W. Lee, and N. Rong, “What makes some POMDP problems
easy to approximate?” in Advances in Neural Information Processing
Systems (NIPS), 2007.

[5] ——, “A point-based pomdp planner for target tracking,” in Proc. IEEE
Int. Conf. on Robotics & Automation, 2008, pp. 2644–2650.

[6] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol. 101,
no. 1–2, pp. 99–134, 1998.

[7] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov
decision problems,” in Proc. Nat. Conf. on Artificial Intelligence, 1999,
pp. 541–548.

[8] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte, “An
experiment in integrated exploration,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, 2002.

[9] C. Papadimitriou and J. Tsisiklis, “The complexity of Markov decision
processes,” Mathematics of Operations Research, vol. 12, no. 3, pp.
441–450, 1987.

[10] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in Proc. Int. Jnt. Conf. on Artificial
Intelligence, 2003, pp. 477–484.

[11] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards
robotic assistants in nursing homes: Challenges and results,” Robotics
& Autonomous Systems, vol. 42, no. 3–4, pp. 271–281, 2003.

[12] P. Poupart and C. Boutilier, “Value-directed compression of POMDPs,”
in Advances in Neural Information Processing Systems (NIPS). The
MIT Press, 2003, vol. 15, pp. 1547–1554.

[13] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[14] N. Roy, G. Gordon, and S. Thrun, “Finding aproximate POMDP
solutions through belief compression,” J. Artificial Intelligence Research,
vol. 23, pp. 1–40, 2005.

[15] G. Shani, R. Brafman, and S. Shimony, “Adaptation for changing
stochastic environments through online POMDP policy learning,” in
Proc. Eur. Conf. on Machine Learning, 2005, pp. 61–70.

[16] ——, “Forward search value iteration for POMDPs,” in Proc. Int. Jnt.
Conf. on Artificial Intelligence, 2007.

[17] R. Smallwood and E. Sondik, “The optimal control of partially ob-
servable Markov processes over a finite horizon,” Operations Research,
vol. 21, pp. 1071–1088, 1973.

[18] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Proc. Uncertainty in Artificial Intelligence, 2004, pp. 520–
527.

[19] ——, “Point-based POMDP algorithms: Improved analysis and imple-
mentation,” in Proc. Uncertainty in Artificial Intelligence, 2005.

[20] M. Spaan and N. Vlassis, “A point-based POMDP algorithm for robot
planning,” in Proc. IEEE Int. Conf. on Robotics & Automation, 2004.

