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Abstract—Mutual adaptation is critical for effective team
collaboration. This paper presents a formalism for human-
robot mutual adaptation in collaborative tasks. We propose the
bounded-memory adaptation model (BAM), which captures human
adaptive behaviors based on a bounded memory assumption.
We integrate BAM into a partially observable stochastic model,
which enables robot adaptation to the human. When the human is
adaptive, the robot will guide the human towards a new, optimal
collaborative strategy unknown to the human in advance. When
the human is not willing to change their strategy, the robot
adapts to the human in order to retain human trust. Human
subject experiments indicate that the proposed formalism can
significantly improve the effectiveness of human-robot teams,
while human subject ratings on the robot performance and trust
are comparable to those achieved by cross training, a state-of-
the-art human-robot team training practice.

I. INTRODUCTION

The development of new robotic systems that operate in
the same physical space as people highlights the emerging
need for robots that can integrate into human teams. Such
systems can achieve significant economic and ergonomic
benefits in manufacturing, as well as improve the quality of
life of people at home. Previous work in human teaming has
shown that mutual adaptation can significantly improve team
performance [1]; we believe that the same holds for human-
robot teams in collaborative tasks.

In previous work, human-robot cross-training has been
shown to significantly improve subjective measures of team
performance and metrics of team fluency [2]. The focus has
been the computation of a robot policy aligned with the human
preference, without taking into account the quality of that
preference. This can result in the team executing sub-optimal
policies, if for instance the human has an inaccurate model
of the robot capabilities. On the other hand, given a known
optimal way to execute the task, one could simply program the
robot to always follow the optimal path, ignoring the actions
of the human teammate. This, however, can have a negative
effect on the human trust in the robot, affecting the willingness
of people to work with their robotic teammates and ultimately
damaging the overall team performance [3]–[5].

For instance, Fig. 1 illustrates a collaborative task, where
human and robot are carrying a table outside of the room.
There are two ways to finish the task, one with the robot facing
the door (Goal 1, Fig. 1a-top) and one with the robot facing

(a) (b)

Fig. 1: (a) Human-robot table carrying task. Rotating the table so that the robot
is facing the door (top, Goal 1) is better than the other direction (bottom, Goal
2), since the exit is included in the robot’s field of view and the robot can
avoid collisions. (b) UI with instructions.

the room (Goal 2, Fig. 1a-bottom). We assume that Goal 1
is better, since the robot has a clear view of the door using
its on-board sensor and the team is more likely to succeed in
executing the task. The human does not have this information
and may prefer to rotate the table towards Goal 2. Intuitively,
if the human insists on the suboptimal goal, the robot should
comply in order to finish the task. If the human is willing to
adapt, the robot should guide them towards the optimal goal.

In this paper, we describe a formalism for human and
robot mutual adaptation, where the robot builds a model of
human adaptation to guide the human teammate towards more
efficient strategies, while maintaining human trust to the robot.
We first present Bounded memory Adaptation Model (BAM),
a model based on a bounded memory assumption which limits
the history length that the human team member considers in
their decision making. BAM additionally assumes that each
human teammate has an a priori willingness to adapt to the
robot, which we define as adaptability. The adaptability of
a participant is unknown beforehand and cannot be directly
observed. Therefore, we denote it as a partially observable
variable in a mixed-observability Markov decision process
(MOMDP) [6]. The MOMDP formulation enables the robot to
infer the adaptability of a human teammate through interaction
and observation, and reason in a probabilistic sense over the
ways the human can change their strategy.

We conducted a human subject experiment (n = 69) on a
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Fig. 2: (Top row) MOMDP belief update on human adaptability ↵ 2 {0, 0.25, 0.5, 0.75, 1.0} for three different users in the human subject experiment
of Sec. VI. Larger values of ↵ indicate higher adaptability. (Second, third and bottom row) The rows correspond to Users 1, 2 and 3 and show the table
configuration at each time-step of task execution. Columns indicate different time-steps. Red color indicates human and robot disagreement in their actions,
in which case the table does not rotate. User 1 (teal dot) insists on their initial strategy throughout the task and the robot (black dot) complies, whereas Users
2 and 3 (orange and magenta dot) adapt to the robot.

simulated table carrying task (Fig. 1). Fig. 2 shows different
human and robot behaviors. If human and robot disagree on
their strategies within an interaction history of 3 time-steps
and the human insists in their strategy in the next time-step,
then the MOMDP belief is updated so that smaller values of
adaptability ↵ have higher probability (lower adaptability). If
the human switches to the robot strategy, larger values become
more likely. The belief remains the same once human and
robot agree on their strategies. If the robot infers the human to
be non-adaptive, it complies to the human strategy. Otherwise,
it guides them towards the optimal goal.

In the experiment, participants were significantly more
likely to adapt to the robot strategy when working with a robot
utilizing the proposed formalism (p = 0.036), compared to
cross-training with the robot. Additionally, participants found
the performance as a teammate of the robot executing the
learned MOMDP policy to be not worse than the performance
of a robot that cross-trained with the participants. Finally,
the robot was found to be more trustworthy with the learned
policy, compared with executing an optimal strategy while
ignoring the adaptability of the human teammate (p = 0.048).

II. RELEVANT WORK

There has been extensive work on one-way robot adaptation
to the human. Approaches involve a human expert providing
demonstrations to teach the robot a skill or a specific task [7]–
[12]. Robots have also been able to infer the human preference
online through interaction. In particular, partially observable
Markov decision process (POMDP) models have allowed
reasoning over the uncertainty on the human intention [13],
[14]. The MOMDP formulation [6] has been shown to achieve
significant computational efficiency, and has been used in
motion planning applications [15]. Recent work has also
inferred human intention through decomposition of a game
task into subtasks for game AI applications [16]. Alternatively,
Macindoe et al. proposed the partially observable Monte-Carlo

cooperative planning system, in which human intention is
inferred for a turn-based game [17]. Nikolaidis et al. proposed
a formalism to learn human types from joint-action demon-
strations, infer online the type of a new user and compute
a robot policy aligned to their preference [18]. Simultaneous
intent inference and robot adaptation has also been achieved
through propagation of state and temporal constraints [19].
Another approach has been the human-robot cross-training
algorithm, where the human demonstrates their preference
by switching roles with the robot, shaping the robot reward
function [2]. Although it is possible that the human changes
strategies during the training, the algorithm does not use
a model of human adaptation that can enable the robot to
actively influence the actions of its human partner.

There have also been studies in human adaptation to the
robot. Previous work has focused on operator training for mil-
itary, space and search-and-rescue applications, with the goal
of reducing the operator workload and operational risk [20].
Additionally, researchers have studied the effects of repeated
interactions with a humanoid robot on the interaction skills
of children with autism [21], on language skills of elementary
school students [22], as well as on users’ spatial behavior [23].
Human adaptation has also been observed in an assistive
walking task, where the robot uses human feedback to improve
its behavior, which in turn influences the physical support
provided by the human [24]. While the changes in the human
behavior are an essential part of the learning process, the
system does not explicitly reason over the human adaptation
throughout the interaction. On the other hand, Dragan and
Srinivasa proposed a probabilistic model of the inference made
by a human observer over the robot goals, and introduced
a motion generating algorithm to maximize this inference
towards a predefined goal [25].

We believe that the proposed formalism for human-robot
mutual adaptation closes the loop between the two streams
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Fig. 3: Integration of BAM into MOMDP formulation.

of research. The robot reasons in a probabilistic sense over
the different ways that the human may change their strategy,
based on a model of human adaptation parameterized by the
participant’s willingness to adapt. It updates the model through
interaction and guides participants towards more efficient
strategies, while maintaining human trust to the robot.

Mutual adaptation between two agents has been extensively
explored in the field of game theory [26]. Economic theory re-
lies significantly on on strong assumptions about the rationality
of the agents and the knowledge of the payoff functions. Such
assumptions are not necessary applicable in settings where the
players are not involved in a full computation of optimal strate-
gies for themselves and the others [27]. We believe that this
is particularly true in a human-robot team setting, where the
human is uncertain on how the robot will act and has little time
to respond. Therefore, we propose a model of human adaptive
behavior based on a bounded memory assumption [28]–[30]
and integrate it into robot decision making.

III. PROBLEM SETTING

We formally describe the evolution of the human-robot
collaborative task as a Multi-Agent Markov Decision Pro-
cess (MMDP) [17] with a set of states Q : X
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where � 2 [0, 1) is a discount factor that downweighs
future rewards. Note here that because the human policy is
unknown to the robot, it has no choice but to reason (and take
expectations over) all possible human policies ⇡

h

.

In this work, we present BAM, a model of human adaptation
which specifies a parameterization of the human policy ⇡
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. We
define a set of modal policies or modes M , where m 2 M
is a deterministic policy mapping states and histories to joint
human-robot actions: m : X
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probability ↵. If m
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maximizes the expected accumulated
reward, the robot optimal policy would be to take actions a
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specified by m
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is suboptimal and ↵ = 1, the robot
optimal policy would be to follow m

r

, expecting the human
to adapt. In the general case of an unknown ↵, how can we
compute ⇡⇤

r

in Eq. (1)? We approach this problem using a
MOMDP formulation, wherein ↵ is an unobserved variable.
This formulation allows us to estimate ↵ through interaction
and integrate predictions of the human actions into robot action
selection (Fig 3).

IV. THE BOUNDED MEMORY ADAPTATION MODEL

We model the human policy ⇡
h

as a probabilistic finite-state
automaton (PFA), with a set of states Q : X
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triggers an emission of a human
and robot modal policy f : Q⇥M ⇥M ! {0, 1}, as well as
a transition to a new state P : Q ! ⇧(Q).

A. Bounded Memory Assumption
Herbert Simon proposed that people often do not have

the time and cognitive capabilities to make perfectly rational
decisions, in what he described as “bounded rationality” [31].
This idea has been supported by studies in psychology and
economics [32]. In game theory, bounded rationality has been
modeled by assuming that players have a “bounded memory”
or “bounded recall” and base their decisions on recent ob-
servations [28]–[30]. In this work, we introduce the bounded
memory assumption in a human-robot collaboration setting.
Under this assumption, humans will choose their action based
on a history of k-steps in the past, so that Q : X
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previous work which assumes maximum likelihood observa-
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Fig. 4: The BAM human adaptation model.

The proposed model does not require a specific feature
representation. For instance, we could construct features by
combining modal policies mi

h

, mi

r

using an arbitration func-
tion [34]. Additionally, rather than using frequency counts, we
could maintain a probability distribution over human and robot
modes given the history, but we leave this for future work.

C. Human Adaptability
We define the adaptability as the probability of the human

switching from their mode to the robot mode. It would be
unrealistic to assume that all users are equally likely to adapt
to the robot. Instead, we account for individual differences by
parameterizing the transition function P by the adaptability
↵ of an individual. Then, at state q the human will transition
to a new state by choosing an action specified by m

r

with
probability ↵, or an action specified by m

h

with probability
1 � ↵ (Fig. 4). We include noise in the model, by assuming
that the human can take any other action uniformly with some
probability ✏.

V. ROBOT PLANNING

In this section we describe the integration of BAM in the
robot decision making process using a MOMDP formulation.
A MOMDP uses proper factorization of the observable and
unobservable state variables S : X ⇥ Y with transition
functions T
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, reducing the computational load [6]. The
set of observable state variables is X : X
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towards task completion and M is the set of modal policies
followed by the human and the robot in a history length k.
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We use a point-based approximation algorithm to solve the
MOMDP for a robot policy ⇡

r

that takes into account the
robot belief on the human adaptability, while maximizing the
agent’s expected total reward.

The policy execution is performed online in real time
and consists of two steps (Fig. 3). First, the robot uses the
current belief to select the action a

r

specified by the policy.

User1 User2 User3

1.0
0.0

0.75

0.25

1.0

#agreements

#
di
sa
gr
ee
m
en
ts

Fig. 5: (Left) Different paths on MOMDP policy tree for human-robot
(white/black dot) table-carrying task. The circle color represents the belief
on ↵, with darker shades indicating higher probability for smaller values
(less adaptability). The white circles denote a uniform distribution over
↵. User 1 is non-adaptive, whereas Users 2 and 3 are adaptive. (Right)
Instances of different user behaviors in the first round of the Mutual-
adaptation session. A horizontal/vertical line segment indicates human and
robot disagreement/agreement on their actions. A solid/dashed line indicates
a human rotation towards the sub-optimal/optimal goal. The numbers denote
the most likely estimated value of ↵.

Second, it uses the human action a
h

to update the belief on
↵ (Eq. 3). Fig. 2 shows different user behaviors in the human
subject experiment described in Sec. VI. Fig. 5 shows the
corresponding paths on the MOMDP policy tree.

VI. HUMAN SUBJECT EXPERIMENT

We conducted a human subject experiment on a simulated
table-carrying task (Fig. 1) to evaluate the proposed formalism.
We were interested in showing that integrating BAM into the
robot decision making can lead to more efficient policies than
state-of-the-art human-robot team training practices, while
maintaining human satisfaction and trust.

On one extreme, we can “fix” the robot policy so that the
robot always moves towards the optimal goal, ignoring human
adaptability. This will force all users to adapt, since this is the
only way to complete the task. However, we hypothesize that
this will significantly impact human satisfaction and trust in
the robot. On the other extreme, we can efficiently learn the
human preference [2]. This can lead to the human-robot team
following a sub-optimal policy, if the human has an inaccurate
model of the robot capabilities. We show that the proposed
formalism achieves a trade-off between the two: When the
human is non-adaptive, the robot follows the human strategy.
Otherwise, the robot insists on the optimal way of completing
the task, leading to significantly better policies compared to
learning the human preference, while maintaining human trust.

A. Independent Variables
We had three experimental conditions, which we refer to as

“Fixed,” “Mutual-adaptation” and “Cross-training.”
Fixed session The robot executes a fixed policy, always
acting towards the optimal goal. In the table-carrying scenario,
the robot keeps rotating the table in the clockwise direction
towards Goal 1, which we assume to be optimal (Fig. 1). The
only way to finish the task is for the human to rotate the table



in the same direction as the robot, until it is brought to the
horizontal configuration of Fig. 1a-top.
Mutual-adaptation session The robot executes the MOMDP
policy computed using the proposed formalism. The robot
starts by rotating the table towards the optimal goal (Goal
1). Therefore, adapting to the robot strategy corresponds to
rotating the table to the optimal configuration.
Cross-training session Human and robot train together using
the human-robot cross-training algorithm [2]. The algorithm
consists of a forward phase and a rotation phase. In the forward
phase, the robot executes an initial policy, which we choose
to be the one that leads to the optimal goal. Therefore, in
the table-carrying scenario, the robot rotates the table in the
clockwise direction towards Goal 1. In the rotation phase,
human and robot switch roles, and the human inputs are used
to update the robot reward function. After the two phases, the
robot policy is recomputed.

B. Hypotheses
H1 Participants will agree more strongly that the robot is
trustworthy, and will be more satisfied with the team per-
formance in the Mutual-adaptation condition, compared to
working with the robot in the Fixed condition. We expected
users to trust more the robot with the learned MOMDP
policy, compared with the robot that executes a fixed strategy
ignoring the user’s willingness to adapt. In prior work, a task-
level executive that adapted to the human partner significantly
improved perceived robot trustworthiness [35]. Additionally,
working with a human-aware robot that adapted its motions
had a significant impact on human satisfaction [36].
H2 Participants are more likely to adapt to the robot strategy
towards the optimal goal in the Mutual-adaptation condition,
compared to working with the robot in the Cross-training
condition. The computed MOMDP policy enables the robot to
infer online the adaptability of the human and guides adaptive
users towards more effective strategies. Therefore, we posited
that more subjects would change their strategy when working
with the robot in the Mutual-adaptation condition, compared
with cross-training with the robot. We note that in the Fixed
condition all participants ended up changing to the robot
strategy, as this was the only way to complete the task.
H3 The robot performance as a teammate, as perceived by
the participants in the Mutual-adaptation condition, will not
be worse than in the Cross-training condition. The learned
MOMDP policy enables the robot to follow the preference
of participants that are less adaptive, while guiding towards
the optimal goal participants that are willing to change their
strategy. Therefore, we posited that this behavior would result
on a perceived robot performance not inferior to that achieved
in the Cross-training condition.

C. Experiment Setting: A Table Carrying Task
We first instructed participants in the task, and asked them

to choose one of the two goal configurations (Fig. 1a), as
their preferred way of accomplishing the task. To prompt
users to prefer the sub-optimal goal, we informed them about

the starting state of the task, where the table was slightly
rotated in the counter-clockwise direction, making the sub-
optimal Goal 2 appear closer. Once the task started, the user
chose the rotation actions by clicking on buttons on a user
interface (Fig. 1b). If the robot executed the same action, a
video played showing the table rotation. Otherwise, the table
did not move and a message appeared on the screen notifying
the user that they tried to rotate the table in a different direction
than the robot. In the Mutual-adaptation and Fixed conditions
participants executed the task twice. Each round ended when
the team reached one of the two goal configurations. In the
Cross-training condition, participants executed the forward
phase of the algorithm in the first round and the rotation phase,
where human and robot switched roles, in the second round.
We found that in this task one rotation phase was enough
for users to successfully demonstrate their preference to the
robot. Following [2], the robot executed the updated policy
with the participant in a task-execution phase that succeeded
the rotation phase. We asked all participants to answer a post-
experimental questionnaire that used a five-point Likert scale
to assess their responses to working with the robot. They also
responded to open-ended questions about their experience.

D. Subject Allocation

We chose a between-subjects design in order to not bias
the users with policies from previous conditions. We recruited
participants through Amazon’s Mechanical Turk service. Since
we are interested in exploring human-robot mutual adaptation,
we disregarded participants that had as initial preference the
robot goal. To ensure reliability of the results, we asked all
participants a control question that tested their attention to
the task and eliminated data associated with wrong answers
to this question, as well as incomplete data. To test their
attention to the Likert questionnaire, we included a negative
statement with the opposite meaning to its positive counterpart
and eliminated data associated with positive or negative ratings
to both statements, resulting in a total of 69 samples.

E. MOMDP Model

The observable state variables x of the MOMDP formula-
tion were the discretized table orientation and the human and
robot modes for each of the three previous time-steps. We
specified two modal policies, each deterministically selecting
rotation actions towards each goal. The size of the observable
state-space X was 734 states. We set a history length k = 3
in BAM. We additionally assumed a discrete set of values of
the adaptability ↵ : {0.0, 0.25, 0.5, 0.75, 1.0}. Therefore, the
total size of the MOMDP state-space was 5 ⇥ 734 = 3670
states. The human and robot actions a

h

, a
r

were deterministic
discrete table rotations. We set the reward function R to be
positive at the two goal configurations based on their relative
cost, and 0 elsewhere. We computed the robot policy using the
SARSOP solver [37], a point-based approximation algorithm
which, combined with the MOMDP formulation, can scale up
to hundreds of thousands of states [15].



0 1↵
0

1
P

(↵
)

T=0

1-step
3-step

0 1↵
0

1

P
(↵

)

T=1

0 1↵
0

1

P
(↵

)

T=2

0 1↵
0

1

P
(↵

)

T=3

0 1↵
0

1

P
(↵

)

T=4

0 1↵
0

1

P
(↵

)

T=5

Fig. 6: (Top row) Belief update for the 1-step and 3-step bounded memory models at successive time-steps. (Middle/bottom row) Table configuration in the
1-step/3-step trial. (T = 1) After the first disagreement and in the absence of any previous history, the belief remains uniform over ↵. The human (white
dot) follows their modal policy from the previous time-step, therefore at T = 2 the belief becomes higher for smaller values of ↵ in both models (lower
adaptability). (T = 2) The robot (orange dot for 1-step, blue dot for 3-step) adapts to the human and executes the human modal policy. At the same time, the
human switches to the robot mode, therefore at T = 3 the probability mass moves to the right. (T = 3) The human switches back to their initial mode. In
the 3-step model the resulting distribution at T = 4 has a positive skewness: the robot estimates the human to be not adaptive. In the 1-step model the robot
incorrectly infers that the human adapted to the robot mode of the previous time-step, and the probability distribution has a negative skewness. (T = 4, 5)
The robot in the 3-step trial switches to the human modal policy, whereas in the 1-step trial it does not adapt to the human, who insists on their mode.

VII. RESULTS AND DISCUSSION

A. Subjective Measures
We consider hypothesis H1, that participants will agree

more strongly that the robot is trustworthy, and will be more
satisfied with the team performance in the Mutual-adaptation
condition, compared to working with the robot in the Fixed
condition. A two-tailed Mann-Whitney-Wilcoxon test showed
that participants indeed agreed more strongly that the robot
utilizing the proposed formalism is trustworthy (U = 180, p =
0.048). No statistically significant differences were found for
responses to statements eliciting human satisfaction: “I was
satisfied with the robot and my performance” and “The robot
and I collaborated well together.” One possible explanation
is that participants interacted with the robot through a user
interface for a short period of time, therefore the impact of
the interaction on user satisfaction was limited.

We were also interested in observing how the ratings in
the first two conditions varied, depending on the participants’
willingness to change their strategy. Therefore, we conducted
a post-hoc experimental analysis of the data, grouping the par-
ticipants based on their adaptability. Since the true adaptability
of each participant is unknown, we estimated it by the mode
of the belief formed by the robot at the end of the task on the
adaptability ↵:

↵̂ = arg max
↵

b(↵) (4)

We considered only users whose mode was larger than a
confidence threshold and grouped them as very adaptive if
↵̂ > 0.75, moderately adaptive if 0.5 < ↵̂  0.75 and
non-adaptive if ↵̂  0.5. Fig. 7b shows the participants’
rating of their agreement on the robot trustworthiness, as a
function of the participants’ group for the two conditions.
In the Fixed condition there was a trend towards positive
correlation between the annotated robot trustworthiness and
participants’ inferred adaptability (Pearson’s r = 0.452, p =
0.091), whereas there was no correlation between the two for

participants in the Mutual-adaptation condition (r = �0.066).
We attribute this to the MOMDP formulation allowing the
robot to reason over its estimate on the adaptability of its
teammate and change its own strategy when interacting with
non-adaptive participants, therefore maintaining human trust.

Interestingly, when asked to comment on the robot behavior,
several adaptive participants in both conditions attempted to
justify the robot actions, stating that “probably there was no
room to rotate [counter-clockwise],” and that “maybe the robot
could not move backwards.” Some non-adaptive participants
in the Fixed condition used stronger language, noting that “the
robot is incapable of adapting to my efforts,” and that it was
“stubborn and would not let us turn in the direction that would
make me do the least amount of work.” On the other hand,
non-adaptive participants in the Mutual-adaptation condition
mentioned that the robot “attempted to anticipate my moves”
and “understood which way I wanted to go.”

Recall hypothesis H3: that the robot performance as a
teammate in the Mutual-adaptation condition, as perceived by
the participants, would not be worse than in the Cross-training
condition. We define “not worse than” similarly to [38] using
the concept of “non-inferiority” [39]. An one-tailed unpaired
t-test for a non-inferiority margin � = 0.5 and a level of
statistical significance ↵ = 0.025 showed that participants
in the Mutual-adaptation condition rated their satisfaction on
robot performance (p = 0.006), robot intelligence (p = 0.024),
robot trustworthiness (p < 0.001), quality of robot actions
(p < 0.001) and quality of collaboration (p = 0.002) not
worse than participants in the Cross-training condition. This
supports hypothesis H3 of Sec. VI-B.

B. Quantitative Measures

To test hypothesis H2, we consider the ratio of participants
that changed their strategy to the robot strategy towards
the optimal goal in the Mutual-adaptation and Cross-training
conditions. A change was detected when the participant stated
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Fig. 7: (a) Number of participants that adapted to the robot for the Mutual-
adaptation and Cross-training conditions. (b) Rating of agreement to statement
“The robot is trustworthy.” Note that the figure does not include participants,
whose mode of the belief on their adaptability was below a confidence
threshold and therefore were not clustered into any of the three groups.

as preferred strategy a table rotation towards Goal 2 (Fig. 1a-
bottom), but completed the task in the configuration of Goal
1 (Fig. 1a-top) in the final round of the Mutual-adaptation
session, or in the task-execution phase of the Cross-training
session. As Fig. 7a shows, 57% of participants adapted to
the robot in the Mutual-adaptation condition, whereas 26%
adapted to the robot in the Cross-training condition. A Pear-
son’s chi-square test showed that the difference is statistically
significant (�2(1, N = 46) = 4.39, p = 0.036). Therefore,
participants that interacted with the robot of the proposed
formalism were more likely to switch to the robot strategy
towards the optimal goal, than participants that cross-trained
with the robot, which supports our hypothesis.

In Sec. VII-C, we discuss the robot behavior for different
values of history length k in BAM.

C. Selection of History Length
The value of k in BAM indicates the number of time-

steps in the past that we assume humans consider in their
decision making on a particular task, ignoring all other history.
Increasing k results in an exponential increase of the state
space size, with large values reducing the robot responsiveness
to changes in the human behavior. On the other hand, very
small values result in unrealistic assumptions on the human
decision making process.

To illustrate this, we set k = 1 and ran a pilot study of 30
participants through Amazon-Turk. Whereas most users rated
highly their agreement to questions assessing their satisfaction
and trust to the robot, some participants expressed their strong
dissatisfaction with the robot behavior. This occurred when
human and robot oscillated back and forth between modes,
similarly to when two pedestrians on a narrow street face
each other and switch sides simultaneously until they reach
an agreement. In this case, which occurred in 23% of the
samples, when the human switched back to their initial mode,
which was also the robot mode of the previous time-step, the
robot incorrectly inferred them as adaptive. However, the user
in fact resumed their initial mode followed before two time-
steps, implying a tendency for non-adaptation. This is a case
where the 1-step bounded memory assumption did not hold.

In the human subject experiment of Sec VI, we used k = 3,
since we found this to describe accurately the human behavior

in this task. Fig. 6 shows the belief update and robot behavior
for k = 1 and k = 3, in the case of mode oscillation.

D. Discussion
These results show that the proposed formalism enables a

human-robot team to achieve more effective policies, com-
pared to state-of-the-art human-robot team training practices,
while achieving subjective ratings on robot performance and
trust that are comparable to those achieved by these practices.
It is important to note that the comparison with the human-
robot cross-training algorithm is done in the context of human
adaptation. Previous work [2] has shown that switching roles
can result in significant benefits in team fluency metrics,
such as human idle time and concurrent motion [40], when a
human executes the task with an actual robot. Additionally, the
proposed formalism assumes as input a set of modal policies,
as well as a quality measure associated with each policy. On
the other hand, cross-training requires only an initialization of
a reward function of the state space, which is then updated
in the rotation phase through interaction. It would be very
interesting to explore a hybrid approach between learning the
reward function and guiding the human towards an optimal
policy, but we leave this for future work.

E. Generalization to Complex Tasks
The presented table-carrying task can be generalized with-

out any modifications in the proposed mathematical model,
with the cost of increasing the size of the state-space and
action-space. In particular, we made the assumptions: (1)
discrete time-steps, where human and robot apply torques
causing a fixed table-rotation. (2) binary human-robot actions.
We discuss how we can relax these assumptions:

1) We can approximate a continuous-time setting by increas-
ing the resolution of the time discretization. Assuming a
constant displacement per unit time v and a time-step dt,
the size of the state-space increases linearly with (1/dt):
O(|X

world

||M |2k) = O((✓
max

�✓
min

)⇤ (1/v)⇤ (1/dt)⇤
|M |2k), where ✓ is the rotation angle of the table.

2) The proposed formalism is not limited to binary actions.
For instance, we can allow torque inputs of different
magnitudes. The action-space of the MOMDP increases
linearly with the number of possible inputs.

Finally, we note that the presented formalism does not rely
on any features of the table-carrying task. For instance, we
could apply our formalism in the case where human and robot
cross a hallway and coordinate to avoid collision, and the
robot guides the human towards the right side of the corridor.
Alternatively, in an assembly manufacturing task the robot
could lead the human to strategies that require less time or
resources.

VIII. CONCLUSION

We presented a formalism for human-robot mutual adap-
tation, which enables guiding the human teammate towards
more efficient strategies, while maintaining human trust in the
robot. First, we proposed BAM, a model of human adaptation



based on a bounded memory assumption. The model is pa-
rameterized by the adaptability of the human teammate, which
takes into account individual differences in people’s willing-
ness to adapt to the robot. We then integrated BAM into a
MOMDP formulation, wherein the adaptability was a partially
observable variable. In a human subject experiment (n = 69),
participants were significantly more likely to adapt to the
robot strategy towards the optimal goal when working with a
robot utilizing our formalism (p = 0.036), compared to cross-
training with the robot. Additionally, participants found the
performance as a teammate of the robot executing the learned
MOMDP policy to be not worse than the performance of the
robot that cross-trained with the participants. Finally, the robot
was found to be more trustworthy with the learned policy,
compared with executing an optimal strategy while ignoring
human adaptability (p = 0.048). These results indicate that the
proposed formalism can significantly improve the effectiveness
of human-robot teams, while achieving subjective ratings on
robot performance and trust comparable to those of state-of-
the-art human-robot team training strategies.

We have shown that BAM can adequately capture human
behavior in a collaborative task with well-defined task-steps
on a relatively fast-paced domain. However, in domains where
people typically reflect on a long history of interactions, or on
the beliefs of the other agents, such as in a Poker game [41],
people are likely to demonstrate much more complex adaptive
behavior. Developing sophisticated predictive models for such
domains and integrating them into robot decision making in a
principled way, while maintaining computational tractability,
is an exciting area for future work.
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space planning for sidekicks in cooperative games.” in AIIDE, 2012.

[18] S. Nikolaidis, R. Ramakrishnan, K. Gu, and J. Shah, “Efficient model
learning from joint-action demonstrations for human-robot collaborative
tasks,” in HRI, 2015.

[19] E. Karpas, S. J. Levine, P. Yu, and B. C. Williams, “Robust execution
of plans for human-robot teams,” in ICAPS, 2015.

[20] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a survey,”
Foundations and trends in human-computer interaction, 2007.

[21] B. Robins, K. Dautenhahn, R. Te Boekhorst, and A. Billard, “Effects
of repeated exposure to a humanoid robot on children with autism,” in
Designing a more inclusive world, 2004.

[22] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive robots
as social partners and peer tutors for children: A field trial,” Human-
computer interaction, 2004.

[23] A. Green and H. Httenrauch, “Making a case for spatial prompting in
human-robot communication, in multimodal corpora: From multimodal
behaviour theories to usable models,” in workshop at LREC, 2006.

[24] S. Ikemoto, H. B. Amor, T. Minato, B. Jung, and H. Ishiguro, “Physical
human-robot interaction: Mutual learning and adaptation,” IEEE Robot.
Autom. Mag., 2012.

[25] A. Dragan and S. Srinivasa, “Generating legible motion,” in RSS, 2013.
[26] D. Fudenberg and J. Tirole, “Game theory mit press,” 1991.
[27] D. Fudenberg and D. K. Levine, The theory of learning in games. MIT

press, 1998.
[28] R. Powers and Y. Shoham, “Learning against opponents with bounded

memory.” in IJCAI, 2005.
[29] D. Monte, “Learning with bounded memory in games,” GEB, 2014.
[30] R. J. Aumann and S. Sorin, “Cooperation and bounded recall,” GEB,

1989.
[31] H. A. Simon, “Rational decision making in business organizations,” The

American economic review, pp. 493–513, 1979.
[32] D. Kahneman, “Maps of bounded rationality: Psychology for behavioral

economics,” American economic review, pp. 1449–1475, 2003.
[33] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space

planning assuming maximum likelihood observations,” in RSS, 2010.
[34] A. Dragan and S. Srinivasa, “Formalizing assistive teleoperation,” in

RSS, 2012.
[35] J. Shah, J. Wiken, B. Williams, and C. Breazeal, “Improved human-

robot team performance using chaski, a human-inspired plan execution
system,” in HRI, 2011.

[36] P. A. Lasota and J. A. Shah, “Analyzing the effects of human-aware
motion planning on close-proximity human–robot collaboration,” Hum.
Factors, 2015.

[37] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.”
in RSS, 2008.

[38] A. D. Dragan, S. S. Srinivasa, and K. C. Lee, “Teleoperation with
intelligent and customizable interfaces,” JHRI, 2013.

[39] E. Lesaffre, “Superiority, equivalence, and non-inferiority trials,” Bul-
letin of the NYU hospital for joint diseases, 2008.

[40] G. Hoffman and C. Breazeal, “Effects of anticipatory action on human-
robot teamwork efficiency, fluency, and perception of team,” in HRI,
2007.

[41] J. Von Neumann and O. Morgenstern, Theory of games and economic
behavior. Princeton university press, 2007.


