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Fig. 1: An envisioned use case. (a) Select an object of interest with the encircle gesture. (b) Activate the Orbit exploration
mode. (c) The drone-mounted camera takes sample photos while orbiting the object of interest autonomously. (d) Browse
sample photos in the gallery preview. (e) Restore a POV associated with a selected sample photo. (f) Compose a final shot by
dragging selected objects of interest to desired locations in the photo. (g) Take the final shot. (h) The final photo.

Abstract—XPose is a new touch-based interactive system for
photo taking, designed to take advantage of the autonomous
flying capability of a drone-mounted camera. It enables the
user to interact with photos directly and focus on taking photos
instead of piloting the drone. XPose introduces a two-stage
eXplore-and-comPose approach to photo taking in static scenes.
In the first stage, the user explores the “photo space” through
predefined interaction modes: Orbit, Pano, and Zigzag. Under
each mode, the camera visits many points of view (POVs) and
takes exploratory photos through autonomous drone flying. In
the second stage, the user restores a selected POV with the
help of a gallery preview and uses direct manipulation gestures
to refine the POV and compose a final photo. Our prototype
implementation, based on a Parrot Bebop quadcopter, relies
mainly on a single monocular camera and works reliably in a
GPS-denied environment. A systematic user study indicates that
XPose results in more successful user performances in photo-
taking tasks than the touchscreen joystick interface widely used
in commercial drones today.

I. INTRODUCTION

Compared with handheld cameras widely used today, a cam-
era mounted on a flying drone affords the user much greater
freedom in finding the point of view (POV) for a perfect photo
shot. Drone-mounted cameras have produced extraordinary
photos, with POVs rarely reachable otherwise [3]. While today
drone-mounted cameras remain the toys of hobbyists, in the
future many people may carry compact drones in pockets [1]
or even wear them on the wrists [4]. They release the drones
into the sky for photo taking and use their touchscreen mobile
phones as viewfinders. This work develops a prototype flying

camera based on a Parrot Bebop quadcopter, with the goal of
investigating the underlying user interaction design and system
implementation issues.

For interaction design, the envisioned flying camera is
conceptually not a drone fitted with a camera, but a camera
with flying capability. The difference between the two lies
in their mental models of interaction. The former implies a
model of interacting with two separate devices, a drone and a
camera. The user first pilots the drone painstakingly through
a joystick or an emulated joystick interface on a touchscreen
(Fig. 2a) in order to reach a desired pose, and then operates the
camera to take a photo. Most drone-mounted cameras today
adopt this model. In contrast, we seek a unified interaction
model for a camera capable of flying. The details of drone
control are transparent to the user, making the flying camera
more intuitive and easier to use.

To explore the design requirements of flying camera inter-
action, we started with an interview study with photographers
and drone flyers, and identified the main objective of helping
the user to explore POVs efficiently while avoiding the per-
ception of latency when the camera transitions between POVs.
Our prototype, called XPose, introduces a novel two-stage
eXplore-and-comPose approach to photo taking in static scenes
1. In the explore stage, the user first selects objects of interest
(Fig. 1a) and the interaction mode (Orbit, Pano, and Zigzag)
on a touchscreen interface (Fig. 1b). The camera then flies

1See the XPose video at https://youtu.be/F1hrPb1SlHo.
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Fig. 2: Compare a common joystick interface and XPose.
(a) The left joystick controls the drone’s heading direction and
altitude. The right joystick controls its translational movement
along or orthogonal to the heading direction. (b) With XPose,
the user interacts directly with objects in the photo.

autonomously along predefined trajectories and visits many
POVs to take exploratory photos (Fig. 1c). The sample photos
are presented as a gallery preview (Fig. 1d). The user taps on
a potentially interesting preview photo and directs the drone to
revisit the associated POV in order to finalize it (Fig. 1e). In
the compose stage, the user composes the final photo on the
touchscreen, using familiar dragging gestures (Fig. 1f). For
example, to place a face of a person, according to the rule
of thirds [10], the user selects the face and drags it towards
the desired location in the photo. To realize this, the camera
flies autonomously to a desired POV, instead of relying on the
user to pilot manually. XPose also supports manipulation of
multiple objects of interest in order to pose them relative to
each other in the photo (Fig. 1f). Note that the user may not
have a direct line of sight to the flying camera and interacts
with it through the touchscreen only.

Our interactive system consists of five main components
conceptually: gesture recognition, camera localization, object
tracking, trajectory planning, and drone control. A light-weight
drone such as the Bebop has severe restriction on the payload
and carries only a single forward-facing main camera. One
challenge is to localize the camera with respect to the object
of interest and track the object reliably, with only a single
monocular camera in a GPS-denied environment. We achieve
this by leveraging the ORB-SLAM algorithm [28].

This work is a first attempt to address both the interaction
design (Sections III and IV) and the system implementation
issues (Section V) for a flying camera in a GPS-denied
environment. The interplay between interaction design and
system implementation is a major challenge for system de-
velopment. We evaluate XPose in a user study and show that
it results more successful user performances in photo-taking
tasks than the touchscreen joystick interface widely used in
commercial drones today (Section VI). Our current prototype
implementation has several limitations. The drone does not
yet avoid obstacles autonomously during the flight. Also, as
the Bebop has severely limited processing power on-board,
most of the computation is performed off-board on a laptop
computer. We discuss these issues in Section VII.

II. RELATED WORKS

A. Drone Applications

Inexpensive consumer drones have led to many novel appli-
cations: running with drones [27], creating flying displays [30,

34], mobile video conferencing [22], and acting as tangible
interface building blocks [18]. In particular, systems such as
Flying Eyes take videos by tracking a moving subject in sports
activities with a drone [20]. Taking such videos, however,
differs substantially from taking still photos. For sports or
action videos, the main challenge is to track moving subjects
in dynamic scenes. For still photos, the key requirements are
precise control of POVs and visual composition.

B. Human-Drone Interaction for Drone Navigation

The user may interact with drones through joystick con-
trollers, touchscreens [2, 6], body gestures [11, 31], natural
language commands [21], etc. . For consumer drones fitted
with cameras, the most common interface for drone navigation
control is probably a touchscreen with emulated joysticks. See
Fig. 2a for an example. The user watches a live video feed
from the drone-mounted camera and commands the drone to
perform pan, tilt, dolly, truck, and pedestal motions through the
joysticks. This approach, which combines joysticks and live
video feedback, is also common for teleoperation of remote
vehicles [9, 19]. Experiences there suggest that direct manual
control through the joysticks faces several difficulties. The
low-level motion control afforded by the joysticks are tedious.
Further, operating the drone through only the video feed often
results in loss of situational awareness, inaccurate attitude
judgment, and failure to detect obstacles [26].

An alternative is semi-autonomous supervisory control. In-
stead of issuing low-level motion commands, the user issues
higher-level commands at the task level [35]. This requires
the drone to understand the environment, through, e.g., the
GPS. GPS-based interfaces enable task-level commands such
as tracking [2, 5], orbiting [5, 7], and navigating to way-
points [2, 6]. However, the GPS may be unavailable or
unreliable in indoor environments and urban canyons. Further,
GPS maps do not supply the visual information required by the
user to identify attractive POVs for photo composition. More
sophisticated interfaces decouple drone trajectory planning
and trajectory execution for photo taking [16, 23]. Trajectory
planning occurs offline and assumes a given 3D model of
the real-world environment. The decoupled plan-and-execute
approach implies a slow interaction cycle and is not quite
suitable for photo taking in real time. Acquisition of accurate
3D models is also a major challenge in itself and remains
an active area of research [15, 25]. Our work investigates a
complete interactive system that aids the user for real-time
photo taking. XPose provides a semi-autonomous interface.
It leverages a state-of-the art method for 3D mapping and
localization in a GPS-denied environment [28], without a 3D
model given a priori.

III. INTERVIEW STUDY

To explore the requirements of effective user interaction
with a drone-mounted camera, we conducted in-depth semi-
structured interviews. The interviewees consist of 8 photogra-
phers (3 professional and 5 amateur) and 2 professional drone
flyers/instructors. For photographers, our questions focused
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Fig. 3: The mapping from user intents to camera motions.

on their main considerations when taking photos and how
drone-mounted cameras can potentially help. For drone fly-
ers/instructors, our questions focused on their experience with
using drones for photo/video taking and how they train novice
users. Each interview session lasted from 30 minutes to an
hour. All interviews were transcribed into text for qualitative
analysis.

As a summary, the photographers’ responses suggest a set
of well-established considerations for photo taking: POVs,
visual composition, lighting conditions, shutter speed, depth of
field, etc. . They also point to the potential for drone-mounted
cameras to discover novel POVs. The drone flyers/trainers’
responses include lengthy preparations for drone photo/video
taking sessions and extensive training required for novice
users. These led to our design objective of a simple, intuitive
interface for efficiently exploring many POVs and directly
manipulating the visual composition.

IV. EXPLORE AND COMPOSE

With traditional handheld cameras, the user explores POVs
by moving around and looking through the viewfinder. Limited
by the user’s physical movements, the exploration of POVs is
local, but the visual feedback is almost instantaneous. The joy-
stick touchscreeen interface tries to reproduce this experience
for flying cameras: the joysticks control the camera’s local
movements, and the touchscreen provides visual feedback.
However, this approach does not account for the difference
in device characteristics between handheld cameras and flying
cameras, as well as the resulting system implementation issues.
The camera’s ability to fly offers the opportunity of exploring
POVs more globally. At the same time, it is more difficult for a
flying camera to achieve an intended POV precisely, due to air
disturbance and other factors. Further, visual feedback is not
instantaneous, because of the communication delay between
the flying camera and the user’s mobile device.

We introduce the two-stage explore-and-compose approach,
which enables the user to explore a wide range of POVs
efficiently in a hierarchical manner. In the explore stage, the
user samples many POVs globally at a coarse level, through
autonomous drone flying. In the compose stage, the user
chooses a sampled POV for further refinement and composes
the final photo on the touchscreen by interacting directly with
objects of interest in the image.

We now illustrate our approach in detail with a concrete
scenario (Fig. 1). Our main character, Terry, walks along a
river on a sunny day and stops at a white statue. She wishes
to take a photo of the statue, but can hardly get a close-
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Fig. 4: Exploration modes.

up shot with a handheld camera, as the statue is almost 15
feet in height. Terry launches XPose using the associated app
on her mobile device. The home view of the app contains a
viewfinder, which displays the live video feed from the drone-
mounted camera.

A. Explore

Terry is initially unsure about the best viewing angle for the
shot and decides to explore the POVs around the statue. She
selects the statue as the object of interest and uses XPose’s
exploration modes to sample the POVs.

1) Object of Interest Selection: First, Terry performs pan
and zoom gestures (Fig. 3) on the touchscreen to get the
statue into the viewfinder. Then she draws a cirle around the
statue in the viewfinder (Fig. 1a). A rectangular bounding box
appears to confirm that the statue has been selected and is
being tracked.

2) POV Sampling: While the statue is being tracked in
the viewfinder, Terry activates the Orbit exploration mode
(Fig. 1b). The flying camera then takes sample shots while
orbiting around the statue autonomously (Fig. 1c).

XPose currently provides three explorations modes: Orbit,
Pano, and Zigzag (Fig. 4). They leverage the autonomous fly-
ing capability of a drone-mounted camera and systematically
explore the POVs by taking sample shots evenly distributed
along predefined trajectories. The Orbit mode is useful when
the user has a single main object of interest, e.g., a person,
a statue, or an interesting artifact, but is quite unsure about
the viewing angle for the best shot. Under this mode, the
camera flies a full circle, while looking inward at the object in
the center. Under the Pano mode, the camera looks outward,
instead of inward. The camera stays at a fixed location, while
panning horizontally for full 360 degrees. This mode is well-
suited for panoramic shots of scenic landscapes, such as
oceans, prairies, or glaciers. The Orbit and Pano modes pan the
camera, but fix its tilt. The Zigzag mode exploits both panning
and tilting. It is useful when the user knows roughly the best
viewing angle. The cameras flies along circular arcs at multiple
heights, all centered at an object of interest. Again, the camera
always points at the object. One use of the Zigzag mode is
to take a selfie against a scenic background. The exploration
modes free the user from the tedium of manually piloting the
drone through low-level motion commands.

B. Compose

After getting many sample shots through the Orbit mode,
Terry is ready to finalize the photo.
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1) POV Restore: Terry switches to the gallery view in the
app and browses the sample shots displayed there (Fig. 1d).
All sample photos have the statue in the center, but different
backgrounds. To take a closer look, Terry taps on a photo to
see it in the full-screen photo view (Fig. 1d,e). One photo
with many tall buildings in the background looks promising,
but the composition is not ideal. The accidental alignment of
the statue’s head and a tall building is distracting. To refine it,
Terry taps a button and commands the flying camera to restore
the POV associated with the selected sample photo (Fig. 1e).

2) Direct View Manipulation: From the restored POV, Terry
selects two buildings in the viewfinder as additional objects of
interest and drags them, one at a time, to the left and right
side of the statue respectively, so that the statue’s head appears
in the gap between the two buildings (Fig. 1f). XPose flies to
a new POV that produces the desired composition as closely
as possible and displays the photos in the viewfinder. Quite
satisfied, Terry takes the final shot (Fig. 1g).

V. SYSTEM IMPLEMENTATION

XPose system consists of five tightly integrated main com-
ponents: gesture recognition, camera localization, object track-
ing, trajectory planning, and drone control. Fig. 5 shows the
main system functions and components, as well as an overview
of the system architecture. In this section, we first give an
overview and then provides some details on each component.

A. Overview

The table in Fig. 5a shows how the system functions
depend on the components. Essential components such as
drone control are required for all functions.

1) Object of Interest Selection: For object selection, the
system must recognize the user’s gestures: pan, zoom, encircle,
etc. . For the pan and zoom gestures (Fig. 3), the system
executes the corresponding motions. For the encircle gesture
(Fig. 1a), the system selects the object and tracks it in the
image, as the flying camera moves. An image-based tracking
algorithm [24, 29] seems a natural choice for object tracking.
However, existing image-based tracking algorithms are not
robust against large viewing angle changes (e.g., in the Orbit
mode) or large viewing distance changes (e.g., while zooming
in and out). We present our approach to robust object tracking
in Section V-D.

2) POV Sampling: For POV sampling, the system first
plans an exploratory trajectory according to the selected ex-
ploration mode and samples the POVs at equal distance along
the trajectory. It visits each sampled POV sequentially, takes
a photo at the POV, and stores both location and image. The
system must be localized at all times, in order to check whether
a planned POV has been reached.

3) POV Restore: The system keeps track of the POVs of
all sample photos obtained in the explore stage. When the user
asks to restore the POV of a selected sample photo, the system
plans a restoring trajectory and executes it until it reaches the
designated POV.

4) Direct View Manipulation: To finalize the composition,
the user may select objects of interest and drag them to
desired locations in the photo. The system must recognize
these gestures. It then computes the POV that produces the
desired composition as closely as possible, plans a trajectory
to it, and flies there.

B. Gesture Recognition

XPose uses Android’s standard gesture detection library
to detect three main types of gestures on the touchscreen:
pan and zoom gesture for finding objects of interest (Fig. 3),
encircle gesture for object selection (Fig. 1a), and drag-and-
drop gesture for direct view manipulation (Fig. 1f).

C. Camera Localization

Unlike handheld cameras, our flying camera explores POVs
globally. It must have greater awareness of the surrounding
environment, and localization becomes a crucial issue. XPose
uses a state-of-the-art monocular visual SLAM algorithm,
ORB-SLAM [28], to build a SLAM map and localize the
camera with respect to a fixed world coordinate. Localization
provides crucial support for trajectory execution and object
tracking.

D. Object Tracking

For robust object selection and tracking, we exploit ORB-
SLAM and use the sparse points produced by the algorithm to
represent objects. ORB-SLAM is a feature-based visual SLAM
system. It provides 2D-to-3D point correspondence: each 2D
feature point exacted from the image is associated with a 3D
map point in the SLAM map.



For object selection, the 2D feature points encircled by the
user’s stroke and their corresponding 3D map points are used
to represent an object.

For object tracking, we need to display a bounding box
around each selected object on the image as a visual cue. For
simplification, we first compute the centroid of each object
by taking a weighted average of its 3D map points. The
weight of a map point is inversely proportional to the distance
between its corresponding 2D feature point and the center of
the selection stroke’s bounding box. The idea is such that the
points closer to the center of the selected region are more
important. Then, the 2D projection of the centroid on the
image plane is used as the center of the bounding box. The size
of the bounding box is continuously estimated by computing
the distance from the camera to the object centroid.

The center of the bounding box is a simplified representation
of an object’s composition location. Formally, the composition
of an object ω is the region it occupies on the image, denoted
by Rω , and its desired composition is another region R∗ω on
the image. We define composition error εc as the difference
between the actual composition and the desired composition:

εc =
∑
ω∈Ω

dH(Rω,R
∗
ω) (1)

where Ω is a set of objects and dH(·, ·) is the Hausdorff
distance between two sets. The Hausdorff distance is normal-
ized with respect to the diagonal length of the image. For
simplification, we use the center of the bounding box as the
actual composition location, and the ending point of the direct
manipulation gesture as the desired composition location.

This object-tracking implementation, based on ORB-
SLAM, is robust against many practical issues common to
drone-mounted cameras, such as temporary frame drops, oc-
clusions, camera exposure changes, etc. . Unlike (semi-) dense
SLAM algorithms (e.g., [12, 13, 32]), ORB-SLAM tracks a
relatively sparse set of features, but it is sufficient for object
tracking in our experience, provided, of course, enough feature
points are extracted from the objects of interest.

E. Trajectory Planning

The system generates several types of trajectories for POV
sampling, POV restore, and direct view manipulation, respec-
tively.

1) POV Sampling: We now describe POV sampling trajec-
tory under each exploration mode.

Orbit. To start the Orbit mode, XPose requires a main
object of interest to be selected. The Orbit mode generates a
full circular trajectory of POVs looking inward at the object.
Formally speaking, the circle is a essentially line of latitude on
a sphere, of which the center is the object centroid in the map,
and the radius of the sphere is the distance from the object
centroid to the camera position where the Orbit mode starts.
For each camera position along the circle, a camera orientation
is computed to maintain the object composition on the image
plane.

The sample shots are planned to be taken evenly along the
circle. However, since a drone can hardly reach a planned
POV exactly, the sampling condition is relaxed from reaching
an exact POV to entering a region of satisfied POVs. The
region is bounded by various factors: the composition error,
the distance difference to the object centroid, the latitude and
longitude angle differences of the sphere centered at the object.

Pano. The Pano mode does not requires any object of
interest to be selected. It generates a trajectory of POVs by
spinning around at a fixed point. In other words, the POVs
have the same camera position and tilt angle, but different
camera pan angles.

The sample shots are taken at evenly distributed pan angles.
Again, a region of satisfied POVs is used, which is bounded
by the position displacement and the orientation difference.

Zigzag. The trajectory generation and execution of the
Zigzag mode are very similar to that of the Orbit mode.
The Zigzag mode also requires a main object of interest to
be selected. The major difference is the sampling pattern.
Considering the sphere centered at the object, the Zigzag mode
samples POVs on a patch of the sphere by deviating locally
from the camera position where the Zigzag mode starts. The
patch is discretized as multiple circular arcs along different
latitudes of the sphere. During execution, the drone moves
along each arc one by one.

2) POV Restore: For POV restore, the trajectory is simply
a line segment connecting the current POV and the target
POV to be restored, without considering potential collisions.
More sophisticated collision-free trajectory generation could
be used, but is beyond our current focus in this work.

The end of a POV restoring trajectory is a region of POVs
around the target POV, which is bounded by the position
displacement and the orientation difference.

3) Direct View Manipulation: For direct view manipulation,
the trajectory is also a line segment, but connecting from the
current POV to a POV that minimizes the composition error
(Equation (1)). This is essentially an optimization problem
under geometric constraints: the trajectory planner needs to
find a POV such that the objects of interest are located at the
user desired positions on the image. Existing methods [17]
may provide POVs that are unreachable, e.g., very far away or
colliding with obstacles. We propose a sample-based method
to solve the problem with an approximate POV, which is
easy to implement. The idea is to sample multiple candidate
POVs and pick the best one. However, the space of POVs
is very large. To achieve real time performance, we reduce
the sampling space by decoupling the camera position and
the camera orientation. We only sample camera positions, and
at each sampled camera position we find an approximately
optimal orientation. The details are described below.

First, the method samples many camera positions as can-
didates around the current POV. Those camera positions are
sampled unevenly: it is denser near the current POV and
sparser further away (with an upper bound). This sampling
strategy is to increase the chance of finding good nearby POVs
in order to minimize the potential flying distance. Second, the



candidate orientation at each candidate position is estimated by
averaging multiple orientations. Each is the optimal orientation
at that candidate position for one object. At last, the candidate
POV with the minimum composition error is returned.

The POV found by the proposed method is an approximate
solution that may not be globally optimal. However, since the
dragging gestures are imprecise touch inputs after all, it is
unnecessary to over-interpret those gestures very accurately.
More importantly, this method can be directly integrated with
other sample-based planning methods that generate collision-
free trajectories in more complicated environments.

F. Drone Control

XPose is implemented based on a Parrot Bebop Drone, with
a forward-facing on-board camera. The camera has a built-in
digital stabilization module to ensure the camera’s up vector
is always orthogonal to the ground and pointing upwards. The
drone is controlled with 6 Degrees-of-Freedom (DoFs) control
commands. The control commands set the reference values for
the on-board firmware to control the following 6 DoFs: the roll
angle, the pitch angle, the yaw rotational velocity, the vertical
velocity and the camera’s pan and tilt angles.

We use 6 independent PID controllers for each DoF. The
control gains are tuned by assuming that the SLAM map is
in metric unit. To resolve the issue of scale ambiguity, we
adopted a maximum likelihood scale estimation method using
the on-board ultrasonic altitude measurement [14].

XPose controls the drone to execute the planned trajectories.
Each trajectory consists of a series of POVs in 5 DoFs, with
3 DoFs in camera position and 2 DoFs in orientation (pan
and tilt). Given a reference POV from the trajectory and the
current POV from the camera localization, the 3-DoF reference
camera position is achieved by controlling the roll and pitch
angles, and the vertical velocity. The reference tilt is achieved
by controlling the camera’s tilt. The reference pan is jointly
controlled by the yaw rotational velocity and the camera’s pan.

During trajectory execution, the POV estimated by ORB-
SLAM cannot be directly used to control the drone, due to the
delay caused by video transmission (∼200ms) and processing
(∼20ms). A delayed estimation of POV may cause oscillating
behaviors while controlling the system at a high update rate.
To compensate the delay, a Kalman Filter is used to predict
the true POV with a constant-velocity model. This predicted
POV is then used for drone control during trajectory execution.
While our method serves the purpose of system evaluation
(Section VI), there are more sophisticated methods [14] if
needed.

VI. EVALUATION

We conducted a user study to compare XPose and a joystick
interface, in order to examine the feasibility of XPose and
quantify the performance differences between the two.

A. Experimental Setup

The study consists of two sets of experiments. The first set
focuses on interaction design. It separately evaluates XPose’s

design of POV exploration and of visual composition. It tries
to minimize the effects of system implementation by placing
the flying camera in a motion capture studio, which provides
highly accurate camera localization and object tracking. The
second set of experiments focus on the overall system perfor-
mance in a more realistic setting, without the help of a motion
capture system.

We compare XPose with one of the Parrot Bebop’s native
interfaces, the Joypad mode in the FreeFlight Pro app. Joypad
emulates a joystick interface on a touchscreen and provides
the user low-level manual control of the drone (Fig. 2a).
We use it as the baseline for comparison, as joysticks and
emulated joystick interfaces are the most widely used method
in commercial drones available today.

B. System Hardware and Software Setup

1) Hardware: Our experiments use a Parrot Bebop drone
with a built-in forward-facing camera. The user’s mobile
device is an ASUS Google Nexus 7 (2012) tablet with a 7.0”
multi-touch display, running Android version 5.1. Both the
drone and the tablet are connected via Wi-Fi to an ASUS
laptop PC with an Intel Core i7 processor and 16 GB RAM.
For the first set of experiments, the PC is also connected
via Ethernet to a server hosting the motion capture system.
Our VICON motion capture system consists of 10 cameras
mounted on the ceiling and provides accurate location infor-
mation of the drone and other tracked objects at 50 Hz.

2) Software: We use an open-source drone driver, Bebop
Autonomy [8], to communicate with the Bebop at 30 Hz. The
Bebop runs low-level controllers on-board. The tablet runs
Rosjava and detects gestures using Android’s gesture detection
library. The PC handles all other computations. It also hosts the
Robot Operating System framework, which is used to establish
communication among the drone, the tablet, and the laptop PC.

C. Interaction Design Evaluation

1) Evaluation of POV Exploration: The explore stage aims
to find potentially interesting POVs. We designed a task to
evaluate the effectiveness of POV exploration in a controlled
lab setting. The setup consists of a transparent board with
several target regions of interest on both sides (Fig. 6a). Each
target region is made of a piece of circular cardboard and
contains several text labels pinned at different orientations.
One can see the text on the label only from a certain viewing
angle range. The text on each label is unique. In each trial, the
flying camera is initially placed at a fixed location on the floor
2 meters away from the board. The participant is instructed
to face away from the flying camera. S/he interacts with the
flying camera through the tablet only and has no direct line
sight. According to our interview study, drones often fly out of
the direct sight of operators. The participant is asked to read
out all the text labels on the board as fast as possible. The trial
terminates when the participant believes that s/he has finished
reading all the text labels and lands the flying camera. The trial
pauses, if the flying camera crashes. The drone is placed on the
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Fig. 6: Evaluation scenes. (a) Evaluation of POV exploration. Text labels are pinned at different orientations on the board.
(b) Evaluation of photo composition. Four translucent colored circles indicate possible composition locations in the photo. (c)
Evaluation of overall system performance for photo taking. The enlarged cartoon figures are shown next to the merry-go-around
in a semi-outdoor environment. (d) Each double circle indicates a possible composition location for the cartoon figure, and its
size indicates the desired size of the figure in the photo.

floor at the crash site. The trial resumes after the participant
relaunches the drone and continues with the task.

We measured the completion time for each trial and the
coverage, i.e., the percentage of correctly reported text labels.

2) Evaluation of Visual Composition: Once a potential
POV is identified, the compose stage aims to place objects
of interest at desired locations in the photo by refining the
POV. We designed another evaluation task for composition,
with a similar setup. In each trial, the participant sees in the
viewfinder four circles of different colors, placed in the photo
frame according to the rule of thirds (Fig. 6b). S/he is asked
to put a specified target region at the location of a randomly
assigned circle so that they match as well as possible.

Again, we measured the completion time for each trial as
well as the composition error (Eq. (1)), which provides one
measure of composition quality.

3) Participants: 8 volunteers (2 female, 6 male, aged 23–
30) were recruited from the university community and the IT
industry. All participants had prior experience taking photos,
and 3 had experience flying drones.

4) Within-Participants Design: Each participant used each
interface to perform each of the two evaluation tasks three
times. The order of trying the two interfaces was counterbal-
anced. The two tasks were ordered sequentially, as we were
not interested in comparing between different tasks. Before
the experiment began, each participant was instructed for 10
minutes for each interface to get familiar with it.

5) Results: We conducted two-way repeated measure
ANOVA to analyze the results.

POV Exploration. The difference between XPose (93.1%)
and the joystick interface (93.6%) in POV coverage was not
significant (all p > 0.05). See Fig. 7a. The participants were
able to identify most text labels (POVs) using either interfaces.

However, Fig. 7b shows that XPose (85.4s) was significantly
faster (F1,7 = 46.36, p < 0.001, η2 = 0.87) than the
joystick interface (153.9s). We also observed a significant
trend (F2,14 = 14.72, p < 0.001, η2 = 0.68) on completion
time over the trials, indicating a learning effect for participants
for both interfaces. Since most participants were not familiar
with drone flying, this effect was expected. However, there
was no significant interaction between the effect of interface
and that of trial on the completion time (p > 0.05), suggesting

that the learning curves of the two interfaces are similar.
Visual Composition. The composition error using XPose

(0.86%) was smaller than that of the joystick interface(1.28%).
See Fig. 7c. While the difference was statistically significant
(F1,7 = 21.336, p = 0.002, η2 = 0.75), both errors
were about 1% and unlikely to make much difference in
most photos. We did not observe any other main effects or
interaction effects (all p > 0.05).

Again, Fig. 7d shows that XPose (34.2s) was significantly
faster (F1,7 = 24.36, p = 0.002, η2 = 0.78) than the joystick
interface (47.8s). The participants also became significantly
faster over trials (F2,14 = 7.65, p = 0.006, η2 = 0.52),
and there was no significant interaction between the effect of
interface and that of trial on the completion time (p > 0.05).

Overall, XPose was significantly faster than the joystick in-
terface in both POV exploration and photo composition, while
achieving a comparable level of task performance measured
in POV coverage or composition error. Although the number
of participants in the study is relatively small, the confidence
intervals are clearly separated (Fig. 7b,d).

D. Overall System Performance Evaluation

We conducted the second set of experiments to evaluate the
overall system performance in a more realistic photo-taking
setting, by removing the motion capture system.

1) Evaluation of Photo Taking: We set up a merry-go-round
in a semi-outdoor environment and hid cartoon figures inside
or on top of the merry-go-round (Fig. 6c). The objective is to
find a specified cartoon figure and compose the photo suitably.
In each trial, the flying camera is initially placed at a fixed
location on the floor 3 meters away from the merry-go-around.
As usual, the participant has no direct line of sight of the flying
camera or the merry-go-round. The participant is asked to take
a photo of a specified cartoon figure and compose the photo so
that the figure appears at one of the five locations marked by
double circles in the viewfinder (Fig. 6d). Further, the figure
must fully cover the inner circle and be fully enclosed by the
outer circle. The trial starts after the participant launches the
drone and terminates when the participant takes a shot. Each
trial uses a different cartoon figure.

We measured the task completion time for each trial and the
success rate.
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Fig. 7: Performance comparison between the joystick interface and XPose. Error bars indicate 95% confidence intervals.

2) Participants: 8 new volunteers (2 female, 6 male, aged
22-30) were recruited from the university community. None
participated in the earlier experiments. All participants had
experience taking photos, and 4 had experience flying drones.

3) Within-Participants Design: Each participant used each
interface to perform the task with two difficulty levels, one
having an easy-to-find figure and one having a harder-to-find
figure. The order of trying the interfaces was counterbalanced.

4) Results: The success rate was 100%, as all specified
cartoon figures were found and composed as required.

We conducted two-way repeated measure ANOVA to ana-
lyze the completion time (Fig. 7e). XPose (57.1s) was signif-
icantly faster (F1,7 = 19.12, p = 0.003, η2 = 0.73) than the
joystick interface (85.3s). As expected, completing the easy
task was significantly faster (F1,7 = 52.79, p < 0.001, η2 =
0.88) than completing the hard task. Interestingly, there was
significant interaction (F1,7 = 6.10, p = 0.043, η2 = 0.47)
between the effect of interface and that of difficulty on the
completion time. Increased difficulty caused a large increase
in the completion time for the joystick interface, but it caused
a smaller increase for XPose. We propose the following
reason. In the more difficult task, the cartoon figure was
partially occluded. XPose provided a gallery preview so that
participants could examine each sample shot closely and find
the partially occluded figure faster.

VII. DISCUSSION

The evaluation results show that XPose outperforms the
joystick interface in POV exploration, in visual composition,
and in photo taking. The joystick interface forces the user to
pilot the drone manually through low-level motion commands.
Doing so while searching for a good POV at the same time
is difficult and tedious. Further, the communication delay
between the flying camera and the touchscreen mobile device
often causes the camera to overshoot the desired pose. Our
explore-and-compose approach demonstrates great potentials
for photo-taking with flying cameras. While our experiments
tested only a small range of representative tasks, we are
pleased to see that our interaction design enabled more effi-
cient POV exploration with predefined exploration modes and
easier photo composition with direct manipulation of objects
of interest. POV exploration and photo composition are es-
sential sub-tasks for photo taking. Creating more efficient and
user-friendly approaches to these tasks contribute significantly
to better photo taking. Participants expressed that XPose is
more natural and intuitive to use: “Yours (XPose) is easier to
use as I can focus on the task instead of flying the drone.”

More encouragingly, the two stages, explore and compose,
worked well together for a more realistic photo taking task in
a GPS-denied semi-outdoor environment. Together, the results
of our user study suggest that XPose clearly represents a step
forward towards a practically useful system.

From the interaction design perspective, the explore-and-
compose approach currently focuses on photo taking in static
scenes. We believe that the underlying design idea is useful
for dynamic scenes as well, but the interaction design and the
system implementation become more challenging. In addition,
the explore-and-compose approach could also be adopted in
other modalities, such as mouse-based interfaces.

From the system implementation perspective, our current
prototype works successfully in indoor, semi-outdoor, and
limited outdoor settings, with two main limitations. First, it
assumes an environment relatively free of major obstruction
for drone flying. By combining the SLAM map and the colli-
sion avoidance capability [33], we can relax this assumption.
Additional sensors, such as the ultrasonic range finder, would
also help. Second, we rely on a laptop computer for most
of the required computation, because the Parrot Bebop has
very limited on-board processing power. With rapid advances
in hardware technology and decreasing cost, we expect to
overcome this limitation in the near future.

VIII. CONCLUSION

XPose introduces the explore-and-compose approach to
photo taking and provides a unified interaction model for
flying cameras. It enables a low-cost quadcopter to fly in a
GPS-denied environment and provides intuitive and effective
interactions that aid the user for photo taking in real time.
As a result, the user focuses on taking photos, instead of
piloting the drone. Our experience highlights the importance
of integrating interaction design and system implementation.
Good interaction design must be rooted in realistic assump-
tions of system capabilities, and new system implementation
technologies open up opportunities for innovative interaction
design. While our prototype implementation still has several
limitations, it is a first step towards the ultimate vision of a
flying camera for everyday use.
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