
Push-Net: Deep Planar Pushing for Objects with
Unknown Physical Properties

Jue Kun Li, David Hsu, Wee Sun Lee
School of Computing, National University of Singapore, 117417 Singapore

Fig. 1: Push-Net enables both a Fetch arm and a Kinova MICO arm to robustly and efficiently push novel objects of unknown physical
properties for re-positioning and re-orientation on a 2D plane.

Abstract—This paper introduces Push-Net, a deep recurrent
neural network model, which enables a robot to push ob-
jects of unknown physical properties for re-positioning and
re-orientation, using only visual camera images as input. The
unknown physical properties is a major challenge for pushing.
Push-Net overcomes the challenge by tracking a history of push
interactions with an LSTM module and training an auxiliary
objective function that estimates an object’s center of mass. We
trained Push-Net entirely in simulation and tested it extensively
on many different objects in both simulation and on two real
robots, a Fetch arm and a Kinova MICO arm. Experiments
suggest that Push-Net is robust and efficient. It achieved over
97% success rate in simulation on average and succeeded in all
real robot experiments with a small number of pushes.

I. INTRODUCTION

Pushing is a simple yet powerful action that can be used to
complement grasping when doing manipulation. Pushing can
be used to re-position objects that may not be easily graspable.
For example, pushing a pile of wires to another location on the
table (leftmost in Fig. 1) may be more effective than moving it
via grasping. Pushing can also be used to re-orient an object
when its initial orientation fails to afford a grasping action.
In this work, we examine whether pushing for re-positioning
and/or for re-orientation can be done with high reliability for
arbitrary convex objects with unknown physical properties,
such as friction and mass distribution.

Specifically, we consider the problem of planar quasi-static
pushing with a single contact. Modeling the physical process
of pushing is difficult as it involves the effects of the object’s
geometry, friction properties of the surfaces, mass distribution
of the object and the pushing forces exerted. These contribute
to making the effect of pushing difficult to determine [16].
Various attempts have been made to come up with force-
motion models for pushing an object [23, 8], but these models
typically require strong assumptions.

In this paper, we argue that it is unnecessary to accurately
know the effects of pushing in order to reliably re-position
and/or re-orient an object. Furthermore, a small number of
observations on the outcomes of pushing is sufficient to learn
how to re-position and/or re-orient a novel object. This is

similar to how a person performs pushes. The person would
push a novel object a few times, and observe the effects
on the object. This enables the person to adjust the actions
to effectively push the object to the desired configuration.
While humans cannot figure out a precise model of pushing
dynamics, the history of push interactions gives us a sense of
how an object may translate and/or rotate given a push action,
which is sufficient for re-positioning and/or re-orientation.

While humans appear to have the ability to predict the
outcome of a push on a novel object from observing the
outcomes of just few pushes, this is not the entire story. We
hypothesize that humans are able to predict the behaviour of
a novel object from a small number of pushes only because of
our long experience observing the behaviour of other objects.
We argue that the same approach will work with robot pushing.
We train a recurrent neural network using the behaviour on a
number of objects to learn the outcome of pushes. Then the
learned network selects actions to re-position and/or re-orient
a novel object using a relatively small number of pushes.

On the physical side, insights on why the approach is
viable can be obtained from the Voting Theorem [16] which
summarizes how an object translates and/or rotates under
an applied force. The Voting Theorem says that with the
knowledge of centroid of pressure distribution or center of
mass (COM), the rotation direction of an object is determined
by a vote of three rays IP , IL and IR. IP is the direction of
the applied push. IL and IR are the two edges of the friction
cone. Conversely, if we know three rays and observe how an
object translates and/or rotates over a sequence of pushes, it
can give us some hints on where the COM may lie in the
body of an object. With a better estimate of the COM, we
can approximately apply the Voting Theorem to select actions
which push an object towards achieving the goal, and this is
usually sufficient for completing the task reliably.

We consider single-contact quasi-static pushing, where in-
ertia effects are negligible. We assume uniform coefficient
of friction between the supporting points and the underlying
surfaces. However, we do not assume any other knowledge
about physical properties of objects, such as center of mass and

APPEARED IN
Proc. Robotics: Science & Systems, 2018

pressure distribution. Based on these assumptions, we propose
a novel deep recurrent neural network model, Push-Net, which
can push novel objects of unknown physical properties for the
purpose of re-positioning and/or re-orientation in a 2D plane.

Push-Net is able to select the next push action while
explicitly handling history of push interactions. Briefly, inputs
to the network are sampled actions, and binary masks of an
object in its current state and its target state. The network
outputs the scores of all sampled actions. This score measures
the similarity between an object’s target state and its actual
state as a result of applying an action on its current state.
Convolutional Neural Network (CNN) layers are used to
extract visual representations of masks. We use Long Short-
Term Memory (LSTM) model to capture history of push
interactions. To select actions for more efficient pushing,
we embed physics into the network as an auxiliary learning
objective. The network is encouraged to predict the location
of the COM of an object on the image plane.

We train the network entirely using simulation data, and
perform extensive experiments. Push-Net was able to achieve
over 97% average success rate in simulation and succeed in all
real robotic experiments with a small number of pushes. The
simulation results show the robustness and the efficiency of
Push-Net compared to handcrafted and simpler neural network
baselines. Real robotic experiments demonstrate the capability
of Push-Net to push real objects with unknown physical
properties and verify the necessity of push history for robust
pushing. Test objects include a subset of YCB dataset [3] and
common household objects.

The remainder of the paper is as follows. After discussing
related work, we analyze the problem of planar pushing to gain
more insights in Section III. We introduce Push-Net in Section
IV, followed by experimental evaluation and discussion.

II. RELATED WORK

The study of pushing mechanics aims to predict how the
state of an object changes under a push. The methodologies
fall into two paradigms: model-based and data-driven. The
model-based approaches propose analytic and deterministic
models which explain the dynamics of pushing. In order
to achieve tractable representation of the dynamics, assump-
tions and approximations are often adopted in these works
[16, 14, 4, 8]. Such simplification inevitably introduces mod-
elling errors which lead to poor generalizability, i.e. the
ability to handle objects of different shapes and/or varying
physical properties. Both [4, 21] use physics-based simulations
to predict the effect of pushing, but this requires them to
assume that the simulation environments have similar physical
properties as the real ones. In [24], the authors utilize a
physics engine to learn physical parameters through black-box
Bayesian optimization, but object models need to be known.

To alleviate the effect of modelling errors and increase
generalizability, data-driven methods come into handy with big
data and increasing computational power. Recent works [11,
13, 22, 20] show promising results in understanding intuitive
physics from visual cues using deep learning, such as esti-

mating objects’ properties, and predicting stability of block
towers. In the realm of manipulation, data driven approaches
also help gain generalizability by utilizing large-scale dataset.
Both [12, 19] present self-supervise frameworks to collect
real robotic grasping data. Their learned policies are able to
generalize to grasp novel objects.

The success of deep learning in grasping stimulates research
in learning better dynamic model for non-prehensile manip-
ulations. In [6], the authors develop an action-conditioned
video prediction model for push interaction. Byravan et al. [2]
proposes a SE3-Net to predict 3D rigid motions for con-
structing future depth images. The next step is to demon-
strate the capability of such learned predictive models for
control and planning. In [1], they jointly learned forward and
inverse models of dynamics using over 400 hours of real
robot experience. The inverse model was then used to predict
actions given the current and the goal images. [5] collected
over 50k unlabeled real robotic pushing attempts using 10 7-
Dof arms, and learned a predictive neural network to plan
push actions. The experiments show that their method can
push novel objects. However, there are two drawbacks in the
current data-driven approaches that exploit real robotic data.
First, the sample complexity can be arbitrarily large. Second,
these approaches pay more attention to visual appearances of
objects rather than other critical physical properties, such as
pressure distribution and COM. As aforementioned, pushing
is an intricate physical process. Considering visual cues only
is not sufficient to achieve generality.

To overcome both difficulties, Zhou et al. [23] combined
model-based and data-driven approaches for modelling planar
friction. They formulated the structural properties of physics
principles as constraints for the optimization procedure. The
experiments show that their model identification procedure is
statistically efficient. However, for every novel object in a new
environment, its force-motion model needs to be relearned.
Our model is only learned once, and is able to apply to novel
objects with unknown physical properties. This is attributed
to embedding of history of push interactions in Push-Net.
In essence, Push-Net is able to roughly estimate underlying
physical properties online. This enables the network to push
objects with unknown physical properties. We follow data-
driven paradigm, but we train the network with only simulation
data. The simulation data contain essential visual cues which
are shared by real sensory inputs. This enables the successful
transfer of the learned model to real world settings.

III. PROBLEM ANALYSIS

We consider the problem of single-contact quasi-static pla-
nar pushing, where inertia effects are negligible. Motion of an
object is determined by physical properties of the object, its
environment and external push forces. Some physical proper-
ties, such as pressure distributions of objects, are statistically
indeterminate [8]. This renders pushing a hard problem in
robotics. Nonetheless, we human are able to quickly adapt to
push novel objects on a daily basis. This could be partially
due to our possession of an internal model of physics or

Fig. 2: A toy example: a sequence of push interactions helps
determine the COM. IP is the direction of pushing on the rod (in
black); IL and IR are the edges of the friction cone. At T = 1, the
rod is observed to rotate clockwise (CW). By the Voting theorem, the
shaded orange region represents possible locations of the COM. At
T = 2, the rod is observed to rotate counter-clockwise (CCW). The
shaded region is hence narrowed by the Voting theorem. At T = 3,
the possible locations of the COM are further reduced.

intuitive physics [17]. Intuitive physics allow us to reason
about physical properties of objects via push interactions. As
a result, we are able to push objects more efficiently. This
coarse internal model of physics gives us a sense of how an
object will translate and/or rotate under an applied force.

The sense of rotation under an applied force has been well
summarized by the Voting theorem [16], which says the rays
IP , IL, and IR vote on the direction of rotation, with ties
resulting in a pure translation. Each vote is determined by
the relation of the ray to the object’s COM. Given an applied
force, the knowledge of COM is essential to decide the sense
of rotation. Hence, we are wondering if we observe how an
object moves under an applied push, can we roughly estimate
where COM is? Better estimate of COM will in turn guide
one to push objects more purposefully. Here is a toy scenario
supporting the possibility of estimating COM via a sequence of
push interactions (Fig. 2). Consider a 1D rod. At time T = 1, a
push is applied on the center of the rod, with IP indicating the
direction of pushing, and IL, IR being the edges of the friction
cone. The rod is observed to rotate clockwise. By the Voting
theorem, the COM must lie on the right half of the rod (shaded
in orange). At T = 2, a push is applied at three-quarters along
the rod. The rod is observed to rotate counter-clockwise. Again
by the Voting theorem, it can be inferred that the COM lies
between half and three-quarters along the rod. Similarly, at
T = 3, we can further narrow down the possible locations of
the COM. In short, this toy example shows that some physical
properties of objects, such as COM, can be roughly estimated
by examining history of push interactions. It is this insight that
leads to the design of Push-Net.

IV. LEARNING TO PUSH OBJECTS WITH UNKNOWN
PHYSICAL PROPERTIES

We consider the problem of single-contact quasi-static
planar pushing for the purpose of re-positioning and/or re-
orientation. Formally, let st = {xt, yt, θt} denote the state of
an object at time t, where xt and yt are the planar position,
and θt is the orientation. The goal is to push an object from its
initial state s0 to its goal state sg . At the step t, we generate the
next target state st+1 by linear interpolation between st and
sg with a fixed step size. The problem now becomes how to
push an object from st to st+1. The push transition dynamics
is governed by the following equation:

st+1 = F (st, at|P) (1)

where a = {ps, pe} denotes that a pusher moves from a
start position to an end position in a 2D plane, and P
represents all unknown physical properties that affect push
dynamics and remain static with respect to the object of
interest. In this work, we focus on one of the static physical
properties, COM, which stays the same with respect to a rigid
body’s origin. As aforementioned, history of push interactions
provides information to estimate physical properties, that’s
P ≈ G(s0, a0, ..., st). The goal is to select the best action
that can push an object from st closest to st+1:

at
∗ = argmin

a∈A
||st+1 − st||

subject to COM is static and
P ≈ G(s0, a0, ..., st)

(2)

where A is a set of all possible actions. To re-position an
object, the difference in states is the translational difference
(x and y). To re-orient an object, the difference in states is
the difference in orientation (θ). To simultaneously re-position
and re-orient an object, the difference in states is the pose
difference (x, y and θ). Next, we show how to translate this
optimization problem with constraints into a neural network.

A. Push-Net Architecture

Push-Net is designed to encode Equation (2). It consists of
four main components, which correspond to 1) state represen-
tation (st and st+1); 2) actions selection (at∗); 3) incorporating
history of push interaction (P ≈ G(s0, a0, ..., st)); 4) adding
physical properties as auxiliary learning objectives (COM is
static). The architecture is shown in Fig. 3.

1) State Representation: To represent the current state st,
we capture an object’s pose and shape in an image. Specif-
ically, given an object on a 2D plane, we capture the top-
down view of the scene (Fig. 4a). To make state represen-
tation invariant to appearances of environment, we perform
background subtraction. This gives us a binary mask Mt of
size 128 × 106 containing only object’s spatial information
and geometry (Fig. 4b). Since the target state sg may not be
achievable with a single push, we generate intermediate st+1

by linear interpolation between st and sg . Concretely, to re-
position an object by ∆x and ∆y meters, the goal mask Mg

is first generated by translating the initial mask M0 by C∆x
and C∆y in the image space, where C is the pixels-per-metric
ratio. C can be obtained by calibration with a reference object
of known size. At each step, we calculate the direction vector
~dt between the centers of the object in Mt and Mg . The next
mask Mt+1 is generated by translating Mt in the direction
of ~dt by a fixed amount of 2.5cm. Similarly, to re-orient an
object, Mg is generated by rotating M0 by ∆θ. The desired
direction of rotation is determined by rotational difference
between Mt and Mg . Rotating Mt in the desired direction by
5◦ gives Mt+1. Both Mt and Mt+1 are parts of inputs to Push-
Net. Four layers of CNN are used to extract the latent features
ft and ft+1 corresponding to Mt and Mt+1 respectively.

2) Action Selection: A push action is specified by the tuple
(ps, pe). A pusher (a sphere of 4cm in diameter in simulation)
moves from the start pixel ps to the end pixel pe on the

Fig. 3: Push-Net architecture. The inputs to Push-Net are the current
mask Mt, the target mask Mt+1 and the sampled action a = (ps, pe).
The outputs of Push-Net are predicted COM and similarity score
(SIM) which measures the Euclidean distance between the underlying
states of the target Mt+1 and the mask generated as a result of
applying a to Mt. Push-Net selects the best action which has the
smallest SIM among all sampled actions. All four CNN layers have
the filter size of 3×3. Each CNN layer is followed by a max pooling
layer (omitted in the figure) of size 3 × 3. The number of channels
in four CNN layers are 16, 16, 32, 32 respectively. The weights of
CNN layers are shared by Mt and Mt+1. The outputs of the last
CNN layer is flattened to form ft and ft+1. The input size and the
hidden size of LSTM are both 80. LSTM has only one layer. FC
represents Fully Connected layer. The blue minus sign returns the
absolute element-wise difference between f ′

t+1 and ft+1.

Fig. 4: (a) The camera view in DART simulator. (b) Segmented mask
image. (c) The red arrows indicate sampled actions.

image plane. Clearly, the action space is humongous (over
108). Hence, rather than learning a network which directly
predicts the best action as the output [1] (a harder problem),
we design Push-Net to select the best action among a set
of candidates (inputs to Push-Net)) based on certain scores.
Similar to [15] where they select actions based on predicted
grasp quality, we select actions based on how close an action
can push an object from its st to st+1. To sample a candidate
action, we first uniformly sample a pixel pe among all pixels
belonging to the object in Mt. We then randomly sample
a line segment le with one end being pe. If the other end
of le falls in the background of Mt, then it deems as ps.
Otherwise, we repeat sampling another line segment until ps is
obtained. For each action candidate (Fig. 4c), Push-Net outputs
a score (SIM), a vector of size three, which measures the
Euclidean distance between the desired st+1 and the actual
next state s′t+1 as a result of applying an action on st.
Specifically, SIM = (simx, simy, simθ), which corresponds
to the distance measures in x, y and θ dimension. For re-
positioning tasks, only simx and simy are used to select
the best action. For re-orientation tasks, only simθ is used.
For simultaneous re-positioning and re-orientation, all three
dimensions are employed to select the best action.

3) History of Push Interactions: In Fig. 3, P ≈
G(s0, a0, ..., st) is captured by the cell state in LSTM. At
each step, the input to LSTM is a feature vector of size 80,

which encodes the current mask Mt and an action candidate
a. Over time, the cell state accumulates history of push
interactions. The output of LSTM is decoded to f ′t+1, which
is the predicted next internal state representation. Finally, we
take the difference between f ′t+1 and ft+1 to obtain predicted
SIM score for a given Mt and Mt+1. In training phase, we
keep the maximum push sequence length to be 10. During
testing, there is no restriction on the length of a sequence.

4) Static Physical Properties as Auxiliary Learning Objec-
tives: As illustrated in Section III, history of push interactions
contains critical information about an object’s physical proper-
ties. In turn, better understanding of those physical properties
can help select actions to push objects more purposefully.
Here, we consider one of the static properties of objects, i.e.
COM. A rigid body’s COM is always fixed relative to its own
origin. We exploit this prior knowledge as an auxiliary learning
objective in Push-Net. Particularly, the output of LSTM is
decoded to predict where COM will be on the image plane
upon applying the action a to Mt. The ground truth labels
of COMs are obtained from the simulator. This auxiliary
learning objective forces LSTM to be able to discover COM,
and hopefully can help select actions to push objects more
purposefully. As we show the results in Section V-B, it is
indeed the case.

B. Data Preparation

We use DART [10] as the simulator which provides realistic
physics simulation. We use blender to randomly generate
objects’ meshes, which can be imported to DART. The training
set contains 60 objects, among which 30 of them are convex
prisms with n-side polygonal base (n ∈ {3, 4, 5}), and the rest
are prisms with ellipse base. The test set contains 12 objects,
of which 6 are convex prisms with n-side polygonal base
(n ∈ {3, 4, 5, 6, 7}), and the other 6 are prisms with ellipse
base. Some example of objects’ meshes are shown in Fig. 5.

We set up a simulated camera in DART to capture the
motion of objects under the effect of applied pushes. The
camera is facing perpendicular to the supporting surface. We
adjust the camera’s field of view so that it produces an
image of size 512 × 424. For each object in the training set,
we uniformly sample 20 different COMs within the object’s
geometry. Under each COM, we position the object at the
center of the image plane, and we uniformly sample 20
initial orientations. For each initial orientation, we perform 20
sequences of pushes. Each sequence has 10 steps. At each step,
a push is generated in the same way as described in Section
IV-A2. For each step, we include the following information in
training data: 1) current mask Mt; 2) current pose of the object
st; 3) push action taken (ps, pe); 4) resultant mask Mt+1; 5)
resultant pose of the object st+1; 6) COMs of the object before
and after the push. All images are downsized to 128×106 for
training. In total, we collected 4.8× 105 sequences of pushes.

As can be noticed, when we treat Mt+1 as the target mask
for Mt, SIM is always a zero vector, because st+1 is exactly
the resultant state transited from st upon an action (ps, pe).
To create examples where SIM is non-zero, we augment the

poly 1 poly 2 poly 3 poly 4 poly 5 poly 6 ellp 1 ellp 2 ellp 3 ellp 4 ellp 5 ellp 6

poly 7 poly 8 poly 9 poly 10 poly 11 poly 12 ellp 7 ellp 8 ellp 9 ellp 10 ellp 11 ellp 12

Fig. 5: First row: a subset of the training object meshes; Second row: the testing object meshes.

data by randomly pairing Mt (current mask) with Mk (target
mask) for each recorded sequence, where 1 ≤ t, k ≤ 10. Such
random pairings are performed four times for each sequence.
Hence, the augmented dataset contains 2.4×106 sequences of
pushes with a 80:20 train/test split.

V. EXPERIMENTS AND DISCUSSION

For experimental evaluation, three pushing tasks are consid-
ered: re-position an object; re-orient an object; simultaneously
re-position and re-orient an object. For re-positioning, a goal
is specified by how much an object needs to be translated in
x and y axes respectively, i.e. (∆x,∆y). For re-orientation, a
goal is specified by how much an object needs to be rotated
around z axis, i.e. ∆θ. For concurrent re-positioning and re-
orientation, a goal is specified in ∆x, ∆y and ∆θ.

We aim to answer the following questions: 1) Does the
use of history help push objects with unknown physical
properties robustly to its goal? 2) Does adding COM as an
auxiliary learning objective help Push-Net learn a better push
policy? 3) Can we use Push-Net to push novel objects with
unknown physical properties? To answer these questions, we
conduct quantitative experiments and qualitative analysis in
both simulation and real world.

To answer question 1), we compare Push-Net to two base-
lines. One is a greedy reactive policy (GRP). GRP assumes an
object’s COM coincides with its geometric center at (xc, yc).
For re-positioning, at each step, GRP performs a fixed length
(2.5cm) push through an object’s geometric center towards the
goal position. For re-orientation, GRP aspires to push an object
to rotate in the desired direction for 5◦ per step. With GRP,
we want to verify that pushing objects with unknown physical
properties is not a trivial problem, and handcraft policies are
not robust. The other baseline is a version of Push-Net without
memory (Push-Net-nomem). All other parts being the same,
Push-Net-nomem does not possess a LSTM module to keep
track of history. It also omits prediction of COM, and only
outputs SIM score. With Push-Net-nomem, we want to show
that history of push interactions is critical.

To answer question 2), we compare Push-Net to Push-Net-
sim, a version of Push-Net without being regularized by COM
prediction. Push-Net-sim outputs SIM score only. This is to
verify the necessity of incorporating COM as an auxiliary
learning objective to facilitate training.

To answer question 3), we extensively test Push-Net on a
set of novel objects with unknown physical properties in both
simulation and real robot experiments.
A. Training

We implemented three networks (Push-Net, Push-Net-
sim, Push-Net-nomem) using the deep learning framework

PyTorch [18]. The loss functions for Push-Net-sim and
Push-Net-nomem are Mean Squared Error (MSE) between
predicted SIM scores and true SIM scores, LSIM =
MSE(SIM ′, SIM). For Push-Net, we add MSE between
predicted COM and true COM as an auxiliary loss function
for weight regularization, LCOM = MSE(COM ′, COM).
We craft the loss function of the following form:

L = C1LCOM +
C2LSIM

1 + C3LCOM
(3)

where C1, C2 and C3 are constants. The first term minimizes
prediction error in COM, while the second term minimizes
prediction error in SIM. The denominator in the second term
forces the loss in SIM to be small when the loss in COM is
already small. The rationale is that a better estimate of COM
helps to predict SIM more accurately. We trained our networks
using ADAM optimization method [9] with default hyper-
parameters. We initialize weights of CNN layers using Xavier
initialization [7]. Cell states and hidden states in LSTM are
initialized to zeros. We trained each network for 200 epochs
with batch size of 16. The training roughly takes half a day
on an NVIDIA GTX 1080 Ti GPU.

B. Simulation Results

A simulation experiment is carried out as follows. For an
object, we first uniformly sample a point inside the object,
and set this point to be its COM in DART simulator. We
initialize the object to be in the center of the image plane
with a random orientation. The simulated camera captures the
scene, from which the current mask image M0 is obtained
by background subtraction. For the task of re-positioning, we
sample a goal, both ∆x and ∆y, from U(−0.3m, 0.3m). For
the task of re-orientation, ∆θ is sampled from U(−90◦, 90◦)
to be a goal. Given a goal, we obtain the goal mask Mg and the
next target mask M1 in the same way as described in Section
IV-A1. From M0, we sample 1000 action candidates. Together
with M0 and M1, action candidates are fed into Push-Net
to output a list of scores for all action candidates. We pick
the action a∗ with the best score and execute this action in
DART. To update the cell state in LSTM, we feed M0, M1 and
the selected action a∗ again to Push-Net. This process repeats
until success or terminal condition is met. The experiment is
deemed as successful if an object can be pushed within its goal
region in 25 steps, otherwise failure. The goal region is ±5cm
for re-positioning and ±10◦ for re-orientation. We report two
evaluation metrics: success rate to measure robustness and
average number of steps to measure efficiency.

We perform evaluation on a random subset of the training
set (12 objects), and 12 objects in the testing set (Fig. 5). For

TABLE I: Results of re-positioning tasks: average success rate / average number of steps
(a) Prisms with polygonal base.

objects GRP Push-Net-nomem Push-Net-sim Push-Net
poly 1 0.95±0.00 / 11.00±0.00 0.99±0.02 / 13.14±0.35 0.96±0.04 / 12.33±0.47 0.99±0.02 / 9.67±1.11
poly 2 0.75±0.00 / 11.00±0.00 0.75±0.05 / 16.43±0.49 1.00±0.00 / 10.00±0.00 1.00±0.00 / 8.00±1.41
poly 3 1.00±0.00 / 11.00±0.00 0.99±0.02 / 12.57±0.49 0.92±0.09 / 10.17±1.67 1.00±0.00 / 9.33±0.47
poly 4 0.79±0.00 / 14.00±0.00 0.90±0.04 / 15.86±0.35 0.88±0.06 / 13.67±0.94 1.00±0.00 / 9.67±0.47
poly 5 1.00±0.00 / 8.00±0.00 1.00±0.00 / 11.57±0.49 1.00±0.00 / 9.67±0.47 0.98±0.04 / 9.83±0.37
poly 6 0.80±0.00 / 12.00±0.00 0.89±0.07 / 15.86±0.83 0.97±0.04 / 11.00±0.82 1.00±0.00 / 9.67±0.75
poly 7 0.70±0.00 / 14.00±0.00 0.87±0.04 / 15.00±0.53 0.92±0.04 / 12.67±0.75 0.96±0.06 / 9.50±1.80
poly 8 1.00±0.00 / 8.00±0.00 1.00±0.00 / 12.00±0.00 0.99±0.02 / 8.83±0.69 0.98±0.02 / 9.33±1.37
poly 9 1.00±0.00 / 12.00±0.00 1.00±0.00 / 11.86±0.64 1.00±0.00 / 10.33±0.47 1.00±0.00 / 9.50±0.50
poly 10 0.95±0.00 / 10.00±0.00 1.00±0.00 / 10.57±0.49 1.00±0.00 / 9.17±0.69 1.00±0.00 / 8.67±0.47
poly 11 0.95±0.00 / 12.00±0.00 1.00±0.00 / 14.00±0.00 1.00±0.00 / 10.50±0.50 1.00±0.00 / 9.70±0.62
poly 12 1.00±0.00 / 10.00±0.00 1.00±0.00 / 11.57±0.49 1.00±0.00 / 10.33±0.47 1.00±0.00 / 8.83±1.21

(b) Prisms with ellipse base.
objects GRP Push-Net-nomem Push-Net-sim Push-Net
ellp 1 1.00±0.00 / 8.00±0.00 1.00±0.00 / 10.57±0.49 1.00±0.00 / 9.67±0.47 1.00±0.00 / 9.17±0.37
ellp 2 1.00±0.00 / 7.00±0.00 0.98±0.02 / 12.43±0.49 1.00±0.00 / 9.67±0.47 1.00±0.00 / 8.67±1.37
ellp 3 1.00±0.00 / 7.00±0.00 1.00±0.00 / 11.14±0.35 1.00±0.00 / 9.00±0.00 1.00±0.00 / 8.50±0.50
ellp 4 1.00±0.00 / 7.00±0.00 1.00±0.00 / 9.86±0.35 1.00±0.00 / 8.83±0.69 1.00±0.00 / 8.00±0.00
ellp 5 1.00±0.00 / 7.00±0.00 1.00±0.00 / 10.00±0.00 1.00±0.00 / 9.00±0.00 1.00±0.00 / 7.00±1.15
ellp 6 1.00±0.00 / 8.00±0.00 1.00±0.00 / 12.00±0.00 1.00±0.00 / 9.00±0.00 1.00±0.00 / 9.17±0.37
ellp 7 1.00±0.00 / 8.00±0.00 0.93±0.03 / 12.71±0.45 1.00±0.00 / 9.00±0.00 0.99±0.02 / 9.50±0.50
ellp 8 1.00±0.00 / 8.00±0.00 0.96±0.02 / 13.00±0.00 1.00±0.00 / 9.83±0.37 1.00±0.00 / 9.00±0.00
ellp 9 1.00±0.00 / 7.00±0.00 1.00±0.00 / 10.00±0.00 1.00±0.00 / 9.00±0.00 1.00±0.00 / 8.50±0.96
ellp 10 1.00±0.00 / 9.00±0.00 0.97±0.04 / 14.57±0.73 1.00±0.00 / 11.00±0.00 1.00±0.00 / 10.00±0.82
ellp 11 1.00±0.00 / 7.00±0.00 1.00±0.00 / 11.57±0.49 1.00±0.00 / 9.17±0.37 1.00±0.00 / 9.17±0.37
ellp 12 1.00±0.00 / 6.00±0.00 1.00±0.00 / 10.29±0.45 1.00±0.00 / 8.83±0.37 1.00±0.00 / 8.33±0.47

TABLE II: Results of re-orientation tasks: average success rate / average number of steps
(a) Prisms with polygonal base.

objects GRP Push-Net-nomem Push-Net-sim Push-Net
poly 1 0.83±0.02 / 7.00±0.00 0.54±0.07 / 12.86±0.83 1.00±0.00 / 7.60±0.49 0.97±0.02 / 8.67±0.47
poly 2 1.00±0.00 / 4.00±0.00 0.70±0.10 / 12.86±1.25 1.00±0.00 / 7.20±0.75 1.00±0.00 / 7.00±0.00
poly 3 0.77±0.02 / 9.33±0.47 0.81±0.07 / 10.00±0.93 0.93±0.03 / 10.67±0.94 0.98±0.02 / 10.60±0.49
poly 4 0.65±0.00 / 11.00±0.00 0.64±0.09 / 13.00±1.07 0.97±0.02 / 9.80±0.40 1.00±0.00 / 9.67±0.47
poly 5 0.43±0.02 / 15.67±0.47 0.78±0.06 / 11.86±1.55 0.92±0.08 / 11.00±0.82 0.98±0.02 / 9.80±0.75
poly 6 0.98±0.02 / 7.00±0.00 0.40±0.07 / 18.00±0.76 1.00±0.00 / 9.00±0.63 1.00±0.00 / 8.33±0.47
poly 7 0.98±0.02 / 6.67±0.47 0.50±0.09 / 16.00±1.07 0.92±0.02 / 10.67±0.47 0.96±0.04 / 9.40±0.49
poly 8 0.80±0.05 / 9.33±0.47 0.49±0.06 / 14.86±0.64 0.93±0.05 / 10.33±1.70 0.96±0.04 / 9.20±0.98
poly 9 0.77±0.02 / 10.00±0.00 0.67±0.04 / 11.00±0.76 0.95±0.03 / 8.00±0.63 0.95±0.04 / 8.67±0.47
poly 10 0.70±0.04 / 10.00±0.00 0.67±0.05 / 11.43±1.29 0.92±0.02 / 8.33±0.47 1.00±0.00 / 7.60±0.49
poly 11 0.67±0.02 / 12.00±0.00 0.66±0.06 / 13.86±0.99 0.95±0.04 / 11.00±0.82 0.98±0.04 / 10.00±0.63
poly 12 0.50±0.00 / 13.33±0.47 0.75±0.08 / 9.43±1.50 0.95±0.03 / 9.40±0.49 0.97±0.02 / 8.33±0.47

(b) Prisms with ellipse base.
objects GRP Push-Net-nomem Push-Net-sim Push-Net
ellp 1 1.00±0.00 / 6.33±0.47 0.81±0.04 / 10.43±0.73 1.00±0.00 / 9.20±0.98 1.00±0.00 / 8.67±0.47
ellp 2 0.49±0.04 / 13.33±0.47 0.83±0.03 / 8.57±0.49 1.00±0.00 / 7.80±0.40 1.00±0.00 / 7.00±0.00
ellp 3 0.63±0.06 / 12.67±0.47 0.89±0.08 / 7.86±0.99 1.00±0.00 / 9.60±0.49 1.00±0.00 / 8.00±0.00
ellp 4 0.92±0.02 / 7.00±0.82 0.85±0.07 / 9.00±1.20 1.00±0.00 / 9.00±0.00 1.00±0.00 / 9.00±0.00
ellp 5 0.63±0.02 / 11.33±0.47 0.92±0.05 / 5.86±0.99 1.00±0.00 / 7.80±0.40 1.00±0.00 / 6.00±0.00
ellp 6 0.85±0.04 / 10.67±0.47 0.81±0.08 / 13.57±1.84 1.00±0.00 / 9.80±0.40 1.00±0.00 / 9.33±0.47
ellp 7 0.67±0.02 / 11.00±0.00 0.85±0.06 / 11.14±0.35 0.99±0.02 / 10.20±0.40 1.00±0.00 / 9.33±0.47
ellp 8 0.45±0.12 / 15.67±1.25 0.80±0.08 / 9.57±1.18 0.99±0.02 / 9.00±0.63 0.98±0.02 / 9.67±0.94
ellp 9 0.58±0.02 / 13.00±0.00 0.81±0.07 / 10.29±1.83 1.00±0.00 / 8.20±0.40 1.00±0.00 / 8.00±0.00
ellp 10 0.40±0.07 / 17.33±0.47 0.86±0.07 / 10.43±1.29 1.00±0.00 / 10.00±0.00 1.00±0.00 / 8.67±1.25
ellp 11 0.33±0.02 / 17.33±0.47 0.69±0.08 / 12.29±1.03 0.90±0.04 / 11.67±0.47 0.96±0.02 / 10.40±0.32
ellp 12 0.69±0.05 / 10.67±0.47 0.74±0.07 / 10.43±1.18 0.99±0.02 / 8.60±0.49 1.00±0.00 / 8.00±0.00

TABLE III: Results of re-positioning and re-orientation tasks: average success rate / average number of steps
(a) Prisms with polygonal base.

objects GRP Push-Net-nomem Push-Net-sim Push-Net
poly 1 0.47±0.02 / 17.01±1.24 0.45±0.04 / 13.01±0.53 0.90±0.04 / 11.63±0.36 0.95±0.00 / 10.61±0.04
poly 2 0.45±0.04 / 14.51±0.51 0.52±0.08 / 16.37±0.73 0.97±0.05 / 10.23±0.94 0.97±0.05 / 9.53±0.50
poly 3 0.37±0.02 / 11.99±0.81 0.35±0.04 / 10.22±0.63 0.97±0.02 / 9.49±0.23 0.98±0.02 / 9.15±0.72
poly 4 0.32±0.02 / 15.13±0.46 0.43±0.02 / 13.69±0.75 0.90±0.00 / 11.15±0.92 0.92±0.06 / 10.07±0.53
poly 5 0.28±0.02 / 13.17±2.66 0.35±0.11 / 10.99±2.46 0.83±0.12 / 11.81±0.40 0.93±0.02 / 12.49±0.50
poly 6 0.38±0.05 / 14.34±1.52 0.32±0.08 / 15.51±0.81 0.88±0.05 / 11.16±0.32 0.92±0.05 / 11.18±1.02
poly 7 0.43±0.02 / 15.62±0.76 0.32±0.09 / 12.96±1.25 0.88±0.05 / 11.82±0.92 0.93±0.06 / 11.97±0.37
poly 8 0.50±0.07 / 13.04±0.81 0.42±0.14 / 10.97±1.27 0.98±0.02 / 8.11±0.15 1.00±0.00 / 7.53±0.42
poly 9 0.28±0.05 / 11.19±1.68 0.47±0.02 / 12.69±0.88 0.92±0.06 / 10.63±1.09 0.97±0.02 / 10.26±0.31
poly 10 0.45±0.00 / 10.44±0.42 0.87±0.02 / 11.47±0.68 1.00±0.00 / 8.13±0.50 0.98±0.02 / 8.22±0.83
poly 11 0.37±0.02 / 16.77±0.83 0.50±0.07 / 13.49±0.80 0.95±0.04 / 9.23±0.42 0.98±0.02 / 7.96±0.48
poly 12 0.15±0.04 / 14.25±1.43 0.68±0.02 / 10.34±0.37 0.85±0.04 / 8.79±0.36 0.92±0.05 / 9.22±0.23

(b) Prisms with ellipse base.
objects GRP Push-Net-nomem Push-Net-sim Push-Net
ellp 1 0.63±0.05 / 16.74±0.46 0.65±0.04 / 10.09±0.87 0.95±0.00 / 8.02±0.74 1.00±0.00 / 5.83±0.31
ellp 2 0.17±0.02 / 17.47±0.34 0.47±0.04 / 13.94±0.40 0.88±0.05 / 10.28±0.60 0.90±0.04 / 11.98±1.36
ellp 3 0.19±0.02 / 8.53±1.56 0.56±0.04 / 14.06±1.54 0.93±0.02 / 11.27±0.34 0.92±0.05 / 8.99±0.85
ellp 4 0.73±0.05 / 11.96±0.08 0.82±0.02 / 10.94±0.77 0.97±0.02 / 7.26±0.63 0.98±0.02 / 6.30±0.24
ellp 5 0.15±0.00 / 5.44±0.63 0.53±0.02 / 11.10±1.35 0.95±0.08 / 8.15±0.25 0.97±0.01 / 8.90±0.17
ellp 6 0.22±0.02 / 12.92±1.48 0.75±0.04 / 13.71±1.01 0.93±0.06 / 7.52±0.81 0.98±0.02 / 9.85±0.67
ellp 7 0.57±0.05 / 10.54±0.53 0.57±0.06 / 12.67±1.03 0.85±0.00 / 7.67±0.08 0.92±0.02 / 6.94±0.24
ellp 8 0.25±0.00 / 15.33±0.41 0.45±0.04 / 13.29±1.33 0.95±0.04 / 11.02±0.71 0.92±0.01 / 9.94±0.87
ellp 9 0.17±0.02 / 11.39±0.80 0.63±0.02 / 9.96±0.26 0.88±0.02 / 9.52±1.18 0.95±0.02 / 9.45±0.62
ellp 10 0.15±0.00 / 19.00±0.54 0.58±0.05 / 14.10±2.07 0.83±0.05 / 10.33±0.33 0.94±0.02 / 9.11±0.97
ellp 11 0.23±0.00 / 4.33±0.47 0.53±0.02 / 14.61±0.89 0.93±0.02 / 11.58±0.80 0.97±0.02 / 11.22±1.59
ellp 12 0.52±0.06 / 13.21±0.71 0.65±0.04 / 13.21±0.67 0.97±0.05 / 9.17±0.80 0.98±0.02 / 8.68±0.70

each object, we sample 5 COMs and 4 initial orientations. Due
to the random nature of action sampling, we repeat these 20
experiments for 10 times. In total, we perform 200 experiments
per object. For fair comparison, the configurations (the initial
poses of objects and the goals) of all 200*24 experiments are
kept the same for all methods. We summarize results for three
tasks in Table I, II and III respectively.

Each entry in the table reports the average success rate
and the average number of steps with their corresponding
standard deviation. For all tasks, we prioritize robustness over
efficiency. Hence, the bold entry for each row represents the
method with the highest average success rate. If there is a tie in
the average success rate, the entry with fewer average number
of steps is favored. The average number of steps is calculated
based on successful cases only. Overall, Push-Net is the most
robust policy with 97.88% average success rate, followed by
Push-Net-sim (95.83%), Push-Net-nomem (74.40%) and GRP
(66.72%). Push-Net is also the most efficient policy with 9.05
average number of steps, followed by Push-Net-sim (9.70),
GRP (10.97) and Push-Net-nomem (12.50).

To answer question 1), we first take a look at two columns
corresponding to Push-Net-nomem and Push-Net. It is clear
that Push-Net outperforms Push-Net-nomem in all cases ex-
cept for one (Table Ia row poly 8). In many cases, Push-Net
gains by a large margin in term of average success rate. This
confirms that LSTM is effective to utilize history of push
interactions. As a result, Push-Net is able to push objects with
unknown physical properties robustly.

We now look at two columns of GRP and Push-Net.
Overall, Push-Net shows its robustness across all tasks and all
objects, while GRP’s performance varies a lot. For tasks of re-

positioning, interestingly, GRP outperforms all other methods
for prisms with ellipse base (Table Ib) but it is not the case
for prisms with polygonal base. We hypothesize that GRP
works effectively for objects of symmetric geometries such
as ellipses. Further evidence can be found in Table Ia and IIa:
GRP performs better for poly 3, poly 5, poly 8, poly 9 and
poly 12, which have near symmetric geometries, while GRP
suffers for non-symmetric objects.

Another observation is that the success rate of GRP is
higher for re-positioning tasks than for re-orientation tasks,
and it performs the worst for concurrent re-positioning and re-
orientation tasks. This is the expected behavior of GRP. For re-
positioning, GRP pushes an object through its geometric center
toward its goal by 2.5cm every step. Despite unknown physical
properties, an object’s resultant position will not deviate much
from the intended position. In contrast, for re-orientation, the
resultant change in orientation depends largely on the location
of COM. The further COM is away from the contact point,
the greater the change in orientation will be. This creates
the problem of overshooting in orientation. As a result, GRP
fails to push an object to its desired orientation. To verify,
we examine some of the failure cases. Indeed, GRP pushes
objects to overshoot the intended orientation and then pushes
in the reverse direction to recover the orientation, but again
it overshoots. Apparently, the entanglement of re-positioning
and re-orientation makes it even harder for GRP to achieve
the goal as showed in Table IIIa and IIIb. Hence, it is often
hard to handcraft a policy which can push objects robustly
with unknown physical properties.

Question 2) concerns whether adding COM as an auxiliary
learning objective helps learn a more efficient policy. We

TABLE IV: Results of re-positioning real objects: success rate / average number of steps
objects straw box cup glasses box clamp plush toy wires bowl

Push-Net 1.00 / 5.00 1.00 / 4.40 1.00 / 4.90 1.00 / 7.00 1.00 / 6.40 1.00 / 4.80 1.00 / 4.50
Push-Net-nomem 0.50 / 7.20 0.70 / 8.14 0.60 / 7.33 0.30 / 6.00 0.30 / 7.33 0.50 / 6.60 0.70 / 8.14

TABLE V: Results of re-orienting real objects: success rate / average number of steps
objects mustard joystick banana gift box toy drill sugar sugar with shifted COM

Push-Net 1.00 / 6.20 1.00 / 3.20 1.00 / 6.50 1.00 / 6.40 1.00 / 4.50 1.00 / 4.60 1.00 / 4.20
Push-Net-nomem 0.40 / 6.50 0.50 / 6.00 0.70 / 4.14 0.60 / 6.17 0.60 / 3.67 0.80 / 6.25 0.70 / 5.43

TABLE VI: Results of re-positioning and re-orienting real objects: success rate / average number of steps
objects mustard joystick banana gift box toy drill sugar sugar with shifted COM

Push-Net 1.00 / 6.40 1.00 / 7.00 1.00 / 8.20 1.00 / 7.90 1.00 / 6.30 1.00 / 6.50 1.00 / 6.30
Push-Net-nomem 0.40 / 6.75 0.20 / 6.00 0.60 / 7.00 0.60 / 6.33 0.60 / 5.67 0.80 / 7.62 0.50 / 6.40

(a) (b)

(c) (d) (e)
Fig. 6: (a) A Fetch robot is equipped with a RGBD head camera;
its gripper tips serve as the pusher; the robot pushes objects in the
workspace. (b) An extended bar is attached to a MICO arm as the
pusher; A Kinect2 sensor provides RGBD data. (c) A subset of YCB
dataset. (d) Some common household objects. (e) The sugar box with
non-centered COM. A heavy battery is inserted into the sugar box to
shift its COM towards its bottom.
compare Push-Net with Push-Net-sim. Both methods achieve
high success rates across tasks and objects. Overall, Push-
Net is more efficient as it takes fewer steps than Push-Net-
sim to push objects to its goal. We argue that this is because
embedding prior knowledge (COM) into the network helps
better estimate SIM. Consequently, better estimation of SIM
helps to select more efficient actions. To support this argument,
we measure the average prediction errors in SIM per step
for Push-Net and Push-Net-sim. For re-positioning, the errors
from Push-Net-sim are 11.19% and 4.54% larger than that of
Push-Net for polygonal bases and ellipse bases respectively.
For re-orientation, the errors from Push-Net-sim are 14.25%
and 7.95% larger than that of Push-Net for polygonal bases and
ellipse bases. For concurrent re-positioning and re-orientation,
the errors difference are 12.40% and 3.25% respectively.

Question 3) pertains to verify if Push-Net can be generalized
to push objects of novel shapes and unknown physical prop-
erties. This is partly substantiated by the results on testing
objects in Table I, II and III. Push-Net obtains consistently
high average success rates on the testing objects. Finally, we
demonstrate the capability of Push-Net to push novel objects
with unknown physical properties with a real robot system.

C. Real Robot Experiments

We perform extensive real robot experiments on novel
objects. The setup is shown in Fig. 6a. The Fetch’s gripper

tip serves as the pusher. We select 7 objects from YCB
dataset and 6 common household objects for the evaluation
of Push-Net. For each object, we perform 10 experiments
for re-positioning and/or re-orientation tasks. The task of re-
orientation is meaningless for near circular objects, such as
the cup. Hence, we only consider the task of re-positioning for
these objects. An object is randomly placed in the workspace
initially. Positional goals in x or y direction are sampled
uniformly from (−0.4m,−0.2m)∪ (0.2m, 0.4m) . Rotational
goals are sampled uniformly from (−90◦,−30◦)∪ (30◦, 90◦).
We use Fetch’s head RGBD camera to capture the workspace.
We segment an object’s point cloud to obtain its mask at each
step. We report the success rate and average number of steps
among the successful trials in Table IV, V and VI.

As shown in the tables, Push-Net can be successfully
generalized to efficiently push real novel objects with unknown
physical properties for all tasks. We also compare Push-Net
with Push-Net-nomem to confirm the necessity of incorpo-
rating history of push interactions for robustly pushing real
objects. Push-Net-nomem struggles across all test cases and
on average takes more steps than Push-Net to achieve the goal.

Push-Net is also able to handle objects with non-uniform
mass distribution. We manually modified the COM of the
sugar box (Fig. 6e) by adding a heavy battery to shift its COM
towards one side. The results show that Push-Net was able to
robustly push the sugar box with varying COMs, whereas the
performance of Push-Net-nomem degrades.

Interestingly, Push-Net also works for some objects of con-
cave geometry, such as the clamp, the toy drill and the joystick,
while Push-Net was trained using only convex objects. We
show three qualitative results in Fig. 7, 8 and 9. Fig. 7
shows pushing a pile of wires to a goal position. Despite the
imperfection in the object’s mask, Push-Net was robust enough
to push it to the goal region. In Fig. 8, the robot was pushing
to re-orient a banana. It is worth noticing that at step 1, Push-
Net pushes aggressively to change the banana’s orientation,
whereas at step 4 and 5, Push-Net gently pushes the banana
to fine tune its orientation so that it won’t overshoot the goal.
In Fig. 9, Push-Net was able to simultaneously re-position
and re-orient the toy drill to its goal configuration with just
6 pushes. Push-Net also works equally well across different
robotic platforms. A Kinova MICO robotic arm (Fig. 6b)
equipped with Push-Net capability is able to push objects
robustly and efficiently to reach goals. More qualitative results
on the Fetch robot and the MICO arm can be found in the
accompany video at: https://tinyurl.com/rss2018pushnet.

https://tinyurl.com/rss2018pushnet

1 2 3 4 5 6 7

1 2 3 4 5 6
Fig. 7: Re-position a pile of wires. The first row lists the RGB images from the head camera at each step. The blue dot indicates the goal
position on the image plane. The second row lists the centered object mask at each step with the red line segment being the push actions.

1 2 3 4 5 6

1 2 3 4 5
Fig. 8: Re-orient a banana. The first row lists the sequence of RGB images. The blue shaded shape indicates the goal orientation of the
banana. The second row is the sequence of the object’s masks with corresponding push actions.

1 2 3 4 5 6 7

1 2 3 4 5 6
Fig. 9: Re-position and re-orient a toy drill. The first row lists the sequence of RGB images. The blue shaded shape indicates the goal
configuration of the drill. The second row is the sequence of the object’s masks with corresponding push actions.

D. Discussion

While the experimental results demonstrate the robustness,
the efficiency and the generalizability of Push-Net, there
are a few areas for improvement. First, action sampler can
be improved by incorporating prior knowledge and domain
constraints. For example, given a cup with handle, it is
more effective to rotate the cup by pushing its handle. Such
prior knowledge can guide to sample more effective actions
compared with randomly sampling actions. Second, although
Push-Net was only trained from convex-shape objects, it was
able to push some real objects of concave geometries. It will
be beneficial to understand the underlying reasons. This can
potential help discover critical features in this problem domain.
Third, in this work, we only deal with pushing a single object
on a plane. In many cases, there are more than one objects
present. Hence, how to push objects through clutter and handle
interactions among objects remains as our future work.

VI. CONCLUSION

We presented Push-Net, a deep recurrent neural network
model for planar pushing novel objects with unknown phys-
ical properties. By capturing history of push interactions in
the network, Push-Net is able to re-position and/or re-orient
objects with unknown physical properties robustly. We trained

Push-Net only using simulation data. Extensive simulation ex-
periments demonstrate the superiority of Push-Net over other
baselines. Experimental results also shows that incorporating
physics, COM, as an auxiliary learning objective helps train
the network to discover more efficient push policies. We also
conducted real robot experiments on a subset of YCB dataset
and some common household objects. The result shows that
Push-Net can be generalized to push real objects with equal
robustness. As discussed in Section V-D, future work will
involve adding prior knowledge to the action sampler. We will
also probe to understand why Push-Net works effectively for
objects of concave geometries. Additionally, pushing objects
through clutter remains as a challenge for future work.

ACKNOWLEDGEMENTS

This work is supported in part by the Singapore MoE Tier
2 grant MOE2016-T2-2-068 and the Office of Naval Research
Global/US Air Force Research Laboratory grant N62909-18-
1-2023.

REFERENCES

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra
Malik, and Sergey Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In Advances
in Neural Information Processing Systems, pages 5074–
5082, 2016.

[2] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning
rigid body motion using deep neural networks. In
Robotics and Automation (ICRA), 2017 IEEE Interna-
tional Conference on, pages 173–180. IEEE, 2017.

[3] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron M Dollar. Bench-
marking in manipulation research: Using the yale-cmu-
berkeley object and model set. IEEE Robotics & Au-
tomation Magazine, 22(3):36–52, 2015.

[4] Mehmet Dogar and Siddhartha Srinivasa. A framework
for push-grasping in clutter. Robotics: Science and
systems VII, 1, 2011.

[5] Chelsea Finn and Sergey Levine. Deep visual foresight
for planning robot motion. In IEEE International Con-
ference on Robotics and Automation (ICRA), 2017.

[6] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsu-
pervised learning for physical interaction through video
prediction. In Advances in Neural Information Process-
ing Systems, pages 64–72, 2016.

[7] Xavier Glorot and Yoshua Bengio. Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 249–
256, 2010.

[8] Eric Huang, Ankit Bhatia, Byron Boots, and Matthew
Mason. Exact bounds on the contact driven motion
of a sliding object, with applications to robotic pulling.
Robotics: Science and systems XIII, 2017.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[10] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias
Kunz, Sumit Jain, Yuting Ye, Siddhartha S Srinivasa,
Mike Stilman, and C Karen Liu. Dart: Dynamic ani-
mation and robotics toolkit.

[11] Adam Lerer, Sam Gross, and Rob Fergus. Learning
physical intuition of block towers by example. arXiv
preprint arXiv:1603.01312, 2016.

[12] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian
Ibarz, and Deirdre Quillen. Learning hand-eye coor-
dination for robotic grasping with deep learning and
large-scale data collection. The International Journal of
Robotics Research, page 0278364917710318, 2016.

[13] Wenbin Li, Seyedmajid Azimi, Aleš Leonardis, and
Mario Fritz. To fall or not to fall: A visual ap-
proach to physical stability prediction. arXiv preprint
arXiv:1604.00066, 2016.

[14] Kevin M Lynch and Matthew T Mason. Stable pushing:
Mechanics, controllability, and planning. The Inter-

national Journal of Robotics Research, 15(6):533–556,
1996.

[15] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea,
and Ken Goldberg. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

[16] Matthew T Mason. Mechanics and planning of manip-
ulator pushing operations. The International Journal of
Robotics Research, 5(3):53–71, 1986.

[17] Michael McCloskey. Intuitive physics. Scientific ameri-
can, 248(4):122–131, 1983.

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch. 2017.

[19] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700
robot hours. In Robotics and Automation (ICRA), 2016
IEEE International Conference on, pages 3406–3413.
IEEE, 2016.

[20] Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae
Park, and Abhinav Gupta. The curious robot: Learn-
ing visual representations via physical interactions. In
European Conference on Computer Vision, pages 3–18.
Springer, 2016.

[21] Zi Wang, Stefanie Jegelka, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Focused model-learning and plan-
ning for non-gaussian continuous state-action systems.
In Robotics and Automation (ICRA), 2017 IEEE Inter-
national Conference on, pages 3754–3761. IEEE, 2017.

[22] Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman,
and Josh Tenenbaum. Galileo: Perceiving physical object
properties by integrating a physics engine with deep
learning. In Advances in neural information processing
systems, pages 127–135, 2015.

[23] Jiaji Zhou, Robert Paolini, J Andrew Bagnell, and
Matthew T Mason. A convex polynomial force-motion
model for planar sliding: Identification and application.
In Robotics and Automation (ICRA), 2016 IEEE Inter-
national Conference on, pages 372–377. IEEE, 2016.

[24] Shaojun Zhu, Andrew Kimmel, and Abdeslam Boular-
ias. Information-theoretic model identification and policy
search using physics engines with application to robotic
manipulation. arXiv preprint arXiv:1703.07822, 2017.

	Introduction
	Related Work
	Problem Analysis
	Learning to Push Objects with Unknown Physical Properties
	Push-Net Architecture
	State Representation
	Action Selection
	History of Push Interactions
	Static Physical Properties as Auxiliary Learning Objectives

	Data Preparation

	Experiments and Discussion
	Training
	Simulation Results
	Real Robot Experiments
	Discussion

	Conclusion

