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Abstract
This paper presents INGRESS, a robot system that follows human natural language instructions to pick and place
everyday objects. The key question here is to ground referring expressions: understand expressions about objects and
their relationships from image and natural language inputs. INGRESS allows unconstrained object categories and rich
language expressions. Further, it asks questions to clarify ambiguous referring expressions interactively. To achieve
these, we take the approach of grounding by generation and propose a two-stage neural-network model for grounding.
The first stage uses a neural network to generate visual descriptions of objects, compares them with the input language
expressions, and identifies a set of candidate objects. The second stage uses another neural network to examine all
pairwise relations between the candidates and infers the most likely referred objects. The same neural networks are
used for both grounding and question generation for disambiguation. Experiments show that INGRESS outperformed a
state-of-the-art method on the RefCOCO dataset and in robot experiments with humans. The INGRESS source code is
available at https://github.com/MohitShridhar/ingress.
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1 Introduction

The human language provides a powerful natural interface
for interaction between humans and robots. In this work, we
aim to develop a robot system that follows natural language
instructions to pick and place everyday objects. To do so, the
robot and the human must have a shared understanding of
language expressions and the environment.

The core issue here is to ground natural language referring
expressions: locate specific objects from input language
expressions and images of the environment (Figure 1). To
focus on this main issue, we assume for simplicity that the
scene is uncluttered and the objects are clearly visible. While
prior work on object retrieval typically assumes predefined
object categories, we want to allow unconstrained object
categories so that the robot can handle a wide variety of
everyday objects not seen before (Figure 1). Further, we
want to allow rich human language expressions in free
form, with no artificial constraints (Figure 1). Finally, despite
the richness of human language, referring expressions may
be ambiguous. The robot should ask the human questions
interactively in order to disambiguate (Figure 1 c).

To tackle these challenges, we take the approach of
grounding by generation, analogous to that of analysis
by synthesis (Neisser 2014). We propose a neural-network
grounding model, consisting of two networks trained on
large datasets, to generate language expressions from the
input image and compare them with the input referring
expression. If the referring expression is ambiguous, the
same networks are used to generate questions interactively
for disambiguation. We call this approach INGRESS, for
INteractive visual Grounding of Referring ExpreSSions.

A referring expression may contain self-referential
and relational sub-expressions. Self-referential expressions
describe an object in terms of its own attributes, e.g., name,
color, or shape. Relational expressions describe an object in
relation to other objects, e.g., spatial relations. By exploiting
the compositionality principle of natural language (Werning
et al. 2012), INGRESS decomposes the grounding process
into two stages (Figure 2). The first stage uses a neural
network to ground the self-referential sub-expressions and
identify a set of candidate objects. The second stage
uses another neural network to ground the relational sub-
expressions by examining all pairwise relations between the
candidate objects. Following the earlier works of Bisk et al.
(2016); Nagaraja et al. (2016); Tellex et al. (2010), we focus
on binary relations here, in particular, visual binary relations.

When the referred object cannot be uniquely identified
from the initial language and image inputs, INGRESS asks
disambiguation questions and asks as few questions as
possible. We present two methods, a simple heuristic and
a more sophisticated partially observable Markov decision
process (POMDP). Through probabilistic language modeling
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Figure 1. Interactive visual grounding of referring expressions. (a) Ground self-referential expressions. (b) Ground relational
expressions. (c) Ask questions to resolve ambiguity. Red boxes indicate referred objects. Blue dashed boxes indicate other
candidate objects. See also the accompanying video at http://bit.ly/INGRESSvid.

and reasoning under uncertainty, the POMDP method
shows better performance over the heuristic method in
disambiguation by asking fewer questions, resulting in more
natural and fluid user interaction.

We implemented INGRESS on a Kinova Mico robot
manipulator, with voice input and RGB-D sensing.
Experiments show that INGRESS outperformed a state-of-
the-art method on the RefCOCO test dataset (Kazemzadeh
et al. 2014) and in robot experiments with humans.

2 Related Work
Grounding referring expressions is a classic question widely
studied in natural language processing, computer vision,
and robotics (Clark et al. 1991; Pateras et al. 1995). A
recent study by Li et al. (2016b) identifies four key issues
in grounding for human-robot collaborative manipulation:
visual search, spatial reference, ambiguity, and perspectives
(e.g., “on my left”). Our work addresses the first three issues
and briefly touches on the last one.

Visual grounding of referring expressions is closely
related to object recognition. In robotics, object recognition
is often treated as a classification task, with a predefined
set of object category labels (Eppner et al. 2016; Pangercic
et al. 2012; Krishnamurthy and Kollar 2013). These methods
restrict themselves to tasks covered by predefined visual
concepts and simple language expression templates. Other
methods such as the works of FitzGerald et al. (2013) and
Matuszek et al. (2012) relax the restriction on language by
developing a joint model of language and perception, but
they have difficulty in scaling up to many different object
categories.

Relations play a critical role in grounding referring
expressions for human-robot interaction, as objects are often
described in relation to others. Again, some earlier work
treats relational grounding as a classification task with
predefined relation templates e.g., Golland et al. (2010);
Guadarrama et al. (2013); Huo and Skubic (2016). A
recent state-of-the-art method by Paul et al. (2016) performs
sophisticated spatial inference on probabilistic models, but
it assumes an explicit semantic map of the world and relies
on formal language representation generated by a syntactic
parser, which does not account for the visual context and is
sensitive to grammatical variations.

Our approach to visual grounding is inspired by recent
advances in image caption generation and understanding (Hu
et al. 2016; Johnson et al. 2016; Mao et al. 2016; Nagaraja

et al. 2016; Yu et al. 2017; Karpathy and Fei-Fei 2015;
Vinyals et al. 2015). By replacing traditional handcrafted
visual feature extractors with convolutional neural networks
(CNNs) and replacing language parsers with recurrent neural
networks (RNNs), these methods learn to generate and
comprehend sophisticated human-like object descriptions for
unconstrained object categories. In essence, the networks
automatically connect visual concepts and language concepts
by embedding them jointly in an abstract space. Along this
line, Nagaraja et al. (2016) propose a network specifically for
grounding relational expressions. Similarly, Hu et al. (2017)
propose a modular neural network and train it for grounding
end-to-end. In contrast, we train separate neural networks for
self-referential and relational expressions and use them in a
generative manner. This allows us to generate questions for
disambiguation, an important issue not addressed in the the
earlier work.

Our approach of grounding by generation is broadly
related to inverse semantics (Tellex et al. 2014), in which
probabilistic grounding graphs are used to generate natural
language requests for help during robot failures. The recent
work of Arkin and Howard (2018) similarly uses proactive
grounding of likely utterances to improve the efficiency of
dialogue interactions. These model-based Bayesian methods
quantify the uncertainty of grounding, but compared with
data-driven neural network methods, they face difficulty in
scaling up to large domains with many object categories.

Ambiguity is an important issue for grounding in practice,
but scarcely explored. The recent work of Hatori et al. (2018)
detects ambiguities, but relies on fixed generic questions,
such as “which one?”, to acquire additional information for
disambiguation. The work of Whitney et al. (2017) forms
a POMDP model for disambiguation, but it again relies
on fixed generic questions, such as “do you mean this
one?”, together with a pointing gesture. To process verbal
responses, it builds a probability model over words from a
predefined vocabulary of known objects. INGRESS generates
object-specific questions, e.g., “do you mean this blue plastic
bottle?”, resulting in improved disambiguation performance.
It also allows unrestricted object categories.

Interactive visual grounding is also related to the broader
question of visual question answering (VQA), e.g., (De Vries
et al. 2017a; Das et al. 2017; De Vries et al. 2017b). It
is also related to slot-filling dialog systems (Williams and
Young 2007; Doshi and Roy 2008), which do not take
advantage of visual inputs, and language-based navigation
tasks Mei et al. (2016); Fried et al. (2018), which focus on

Prepared using sagej.cls

http://bit.ly/INGRESSvid


Shridhar et al 3

grounding actions and spatial relations, sometimes through
dialog (Hemachandra and Walter 2015).

Our work integrates language grounding, visual informa-
tion processing, and robot actions. It evaluates the system
on a real robot with humans. This paper expands our earlier
work (Shridhar and Hsu 2018) by introducing a POMDP
model, INGRESS-POMDP, for disambiguation and integrat-
ing it with visual grounding for improved performance.
INGRESS-POMDP provides a principled probabilistic deci-
sion framework to choose what questions to ask and when
to stop. We also provide additional details on the neural-
network model for visual grounding and the overall system
design.

3 Overview
INGRESS breaks the grounding process into two stages
sequentially and trains two separate LSTM networks,
S-LSTM and R-LSTM, for grounding self-referential expres-
sions and relational expressions, respectively (Figure 2).
The two-stage neural network grounding takes advantage of
the compositionality principle of natural language (Werning
et al. 2012). In particular, relations, such as “left of”, are
independent of entities, such as “blue cups” and “stuffed
animals”. They can be composed to form an expression,
e.g., “a blue cup on the left of stuffed animals”. This neural
modular approach to grounding exploits the compositional
structure of language in the neural network architecture and
has been gaining increasing attention because of its empirical
success. See, e.g., (Andreas et al. 2016; Johnson et al. 2017b;
Hu et al. 2017) . Further, the first stage acts as a ‘filter’,
which reduces the number of candidate objects for relational
grounding in the second stage, and improves computational
efficiency as a result.

Each stage follows the grounding-by-generation approach
and uses the LSTM network to generate a textual description
of an input image region or a pair of image regions. It then
compares the generated expression with the input expression
to determine the most likely referred object. An alternative
is to train the networks directly for grounding instead of
generation, but it is then difficult to use them for generating
questions in case of ambiguity. We describe the grounding
model in more detail in Section 4.

To resolve ambiguities, INGRESS uses S-LSTM or
R-LSTM to generate the textual description of a candidate
object and fits it to a question template to generate an
object-specific question. The user then may provide a
correcting response based on the question asked. We describe
two methods for choosing the disambiguation questions in
Section 5.

While INGRESS handles a wide variety of language
expressions as well as object categories and relations, its
performance is ultimately limited by training data. We
examine these limitations in Sections 7 and 8.

4 Visual Grounding

4.1 Grounding Self-Referential Expressions
Given an input image I and an expression E, the first stage
of INGRESS aims to identify candidate objects from I and
self-referential sub-expressions of E. More formally, let R

be a rectangular image region that contains an object. We
want to find image regions with high probability p(R

∣∣ E, I).
Applying the Bayes’ rule, we have

argmax
R∈R

p(R
∣∣ E, I) = argmax

R∈R

p(E
∣∣R, I) p(R

∣∣ I)
p(E

∣∣ I)
= argmax

R∈R
p(E

∣∣R, I) p(R
∣∣ I),

(1)

where R is the set of all rectangular image regions in
I . Assuming a uniform prior over the image regions, our
objective is then to maximize p(E

∣∣R, I), in other words,
to find an image region R that most likely generates the
expression E.

To do so, we apply the approach of DenseCap (Johnson
et al. 2016), which directly connects image regions that
represent object proposals with natural expressions, thus
avoiding the need for predefined object categories. See
Figure 2 for an overview. First, we use a Faster R-CNN based
localization module (Johnson et al. 2016) to process the input
image I and find a set of image regions Ri, i = 1, 2, . . ., each
representing an object proposal. We use a fully connected
layer to process each region Ri further and produce a 4096-
dimensional feature vector fi. Next, we feed each feature
vector fi into S-LSTM, an LSTM network, and predict
a sequence Si of word probability vectors. The sequence
Si represents the predicted expression describing Ri. The
jth vector in Si represents the jth word in the predicted
expression, and each element of a vector in Si gives the
probability of a word.

The input sequence E is padded to have the same length
as S. The full expressions, such as the ones highlighted
in Figure 3, are generated with an argmax over each word
probability vector Si in the sequence. We then calculate
the average cross entropy loss (CEL) between E and Si,
or equivalently p(E | Ri, I) = p(E | Si), which compares
the input and generated word probability distributions.
Effectively, the S-LSTM output allows us to estimate the
probability of each word in an expression. The average cross
entropy loss over all words in the expression indicates how
well it describes an image region. For more details regarding
the expression generation, see DenseCap (Johnson et al.
2016).

Our implementation uses a pre-trained captioning network
provided by DenseCap (Johnson et al. 2016). The network
was trained on the Visual Genome dataset (Krishna
et al. 2016), which contains around 100, 000 images and
4, 300, 000 expressions, making the model applicable to a
diverse range of real-world scenarios. On average, each
image has 43.5 region annotation expressions, e.g., “cats play
with toys hanging from a perch” and “woman pouring wine
into a glass”.

4.2 Relevancy Clustering
While CEL measures how well the input expression matches
the generated sequence of word probability vectors, it
is subjected to visual ambiguity as a result of lighting
condition variations, sensor noise, object detection failures,
etc. Consider the Pringles chip can example in Figure 3. The
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Figure 2. INGRESS overview. The first stage grounds self-referential expressions and outputs a set of candidate referred objects
(top row). The input image goes into a Faster R-CNN based localization module (Johnson et al. 2016) to generate image regions
representing object proposals. Each image region goes into a fully connected network to extract a feature vector, which in turn
goes into an LSTM network to generate a word probability sequence that represents an expression distribution describing the
image region. The generated expression and the input expression are compared to find candidates for the referred object. The
second stage grounds relational expressions by examining all pairs of candidate image regions (bottom row). Each pair goes into
another LSTM network, which generates a word probability sequence describing the relation between the pair of image regions.
Again, the generated expression and the input expression are compared to find the referred object.

image region contains only part of the can, and it is visually
quite similar to a red cup. CEL is thus low, indicating a good
fit, unfortunately. Further, the word probability vectors might
not consider paraphrases and synonyms, unless explicitly
trained with specific examples.

To deal with these issues, we consider an additional
measure, METEOR (Banerjee and Lavie 2005). METEOR
is a standard machine translation metric that calculates the
normalized semantic similarity score between two sentences.
For example, the METEOR score between “the green
glass” and “the green cup” is 0.83, and that between “the
green glass” and “the blue book” is 0.06. The score is
based on explicit word-to-word matches and word alignment
between sentences. The word matches consider synonyms,
and alignments can handle simple morphological variants
or paraphrases. We calculate the METEOR measure by
generating the most likely expression Ei from Si and
comparing Ei with the input expression E. METEOR,
however, has its own limitation. It does not account for the
visual context and treats all words in an expression with
equal importance. For example, the METEOR score between
“a blue cup on the table” and “a red cup on the table” is
high, because most words in the expressions match exactly
(Figure 3).

For robustness, we calculate both CEL and METEOR
between Si and E, for i = 1, 2, . . . . We then perform K-
means clustering with normalized CEL & METEOR values
and choose K = 2 to form two clusters of relevant and
irrelevant candidate image regions for the referred object
(Figure 3). Finally, the relevant cluster R′ is sent to the
second stage of the grounding model, ifR′ contains multiple

Figure 3. Relevancy clustering. Red boxes (left) and red
dots (right) indicate relevant objects. Green boxes and dots
indicate irrelevant objects. The labels pointing to the dots are
generated self-referential expressions.

candidates. This handcrafted clustering step is somewhat ad
hoc, but it improves the performance in our experiments, and
future work could consider learning to cluster in an end-
to-end manner or integrating more sophisticated clustering
methods (Cherouvim and Papadopoulos 2005).

4.3 Grounding Relational Expressions
In the second stage, we aim to identify the referred object
by analyzing its relations with other objects. We make the
usual assumption of binary relations (Bisk et al. 2016; Kollar
et al. 2010; Nagaraja et al. 2016). While this may appear
restrictive, binary relations are among the most common
in everyday expressions. Further, some expressions, such
as “the leftmost cup”, seem to involve complex relations
with multiple objects, but it can be, in fact, treated as a
binary relation between the referred object and all other
objects treated as a single set. Akin to the grounding of

Prepared using sagej.cls



Shridhar et al 5

self-referential expressions, we seek a pair of image regions,
referred-object region R and context-object region Rc, with
high probability p(R,Rc | E, I):

argmax
R∈R′,Rc∈R′∪{I}

R 6=Rc

p(R,Rc

∣∣ E, I) = argmax
R∈R′,Rc∈R′∪{I}

R 6=Rc

p(E
∣∣R,Rc, I).

(2)
Our approach for grounding relational expressions

parallels that for grounding self-referential expressions. See
Figure 2 for an overview. We form all pair-wise permutations
of candidate image regions, including the special one
corresponding to the whole image similar to Mao et al.
(2016). Each input pair is composed of a concatenated
vector [f, b, fc, bc], where f and fc are the referred and
context feature vectors, b and bc are the referred and context
bounding boxes respectively. The bounding boxes are
encoded in a normalized format: [xtl

W , ytl

H , xbr

W , ybr

H , w·h
W ·H ],

where (xtl, ytl) is the top-left spatial coordinate, (xbr, ybr)
is the bottom-right spatial coordinate, w and h are the box
width and height, W and H are the image width and height
respectively. Most of the spatial information in the scene is
captured by these 2D bounding box encodings. We feed the
concatenated vectors into R-LSTM, another LSTM, trained
to predict relational expressions. By directly connecting
image region pairs with relational expressions, we avoid
the need for predefined relation templates. For each image-
region pair (R,Rc), we generate the relational expression
E′. We compute CEL and METEOR between E′ and the
input expression E over all generated expressions and again
perform K-means clustering with K = 2. If all pairs in the
top-scoring cluster contain the same referred object, then it is
uniquely identified. Otherwise, we take all candidate objects
to the final disambiguation stage. Figure 2 illustrates the
entire pipeline for grounding the sentence “the red can next
to the teddy bear”. The first clustering stage filters out self-
referential expressions with high CEL and METEOR scores
e.g. “a red can of soda”, “red can” etc. from low-scoring ones
e.g. “green cup on the table”, “a teddy bear on the table”
etc. The second clustering stage filters out a single high-
scoring pair “can next to bear” from other low-scoring pairs
“can above red ball”, “banana on the right” etc.

Following the approach of UMD RefExp (Nagaraja et al.
2016), we trained R-LSTM on the RefCOCO training
set (Kazemzadeh et al. 2014), which contains around 19, 000
images and 85, 000 referring expressions that describe
visual relations between images regions, e.g., “bottle on the
left”. Specifically, we used UMD RefExp’s Multi-Instance
Learning Negative Bag Margin loss function for training.
We used stochastic gradient decent for optimization, with
a learning rate of 0.01 and a batch size of 16. The training
converged after 70, 000 iterations and took about a day to
train on an Nvidia Titan X GPU.

5 Resolving Ambiguities
For robot pick-and-place operations, we assume that the
user intends for a single object to be picked up. If
the object cannot be uniquely identified by grounding
the self-referential and relational sub-expressions, the final
disambiguation stage of INGRESS processes the remaining

x 

a t – 1

zdzr

t – 1 t

z’
d

z’

’

r

x 

Figure 4. The graphical model of INGRESS-POMDP. x is
the hidden variable representing the referred object. zr and
zd are observations corresponding to the response utterance
and the description utterance, respectively. a is the robot
action that asks a disambiguation question. The dashed
arrow from x to x′ indicates that the value of x does not
change over time.

candidate objects interactively. It asks the user “Do you mean
. . . ?” to solicit additional information. Generating object-
specific questions is straightforward for INGRESS, because of
its grounding-by-generation design. To ask a question about
an object, we either use S-LSTM or R-LSTM to generate an
expression E and then fit it to the question template “Do you
mean E?”.

After detecting an ambiguous scenario, the robot must
still decide what questions to ask, either self-referential
or relational, and decide when to stop. The choice of
questions is crucial for gathering the required information
for disambiguation. For example, asking a self-referential
question in a scene with visually similar objects does not help
in resolving ambiguity. Further, the robot must balance the
benefit of additional information against the risk of annoying
the user, and stop with a reasonable amount of information
to resolve the ambiguity. We present two methods below:
a greedy heuristic method that goes through the candidate
objects one by one and a principled POMDP model.

5.1 Heuristic Disambiguation
The heuristic method examines all relevant candidate image
regions sequentially and uses a handcrafted heuristic to
decide between the types of questions. In the order of
descending likelihood (Equation 2), the robot physically
points at an object and asks a question generated by either
S-LSTM or R-LSTM. We initially choose S-LSTM, as most
referring expressions primarily rely on visual information (Li
et al. 2016b). We generate a self-referential expression for
each candidate and check if it is informative. In this case,
an expression E is informative if the average METEOR
score between E and all other generated expressions is
small, in other words, it is sufficiently different from all
other expressions. If the most informative expression has an
average METEOR score less than 0.25, we proceed to ask a
question using E. Otherwise, we use R-LSTM to generate a
relational question.

After asking the question, the user can respond “yes” to
choose the referred object, “no” to continue iterating through
other possible objects, or provide a specific corrrective
response to the question, e.g., “no, the cup on the left”. To
process the correcting response, we re-run INGRESS with the
new description expression after “no”.
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The heuristic method treats each question-answer interac-
tion independently and does not maintain an explicit history
of responses. For example, if the answer is “no, the other
cup”, the method cannot infer the meaning of “other cup”
with respect to earlier interactions.

5.2 POMDP Disambiguation
The POMDP is a natural choice for the disambiguation
task. To choose a disambiguation question, it systematically
reasons about the entire history of interactions by
maintaining a belief, i.e., a probability distribution over
the referred object. Specifically, given the current belief,
the robot searches a tree that encodes sequences of
future question-answer interactions and chooses the best
question in expectation. The robot asks the chosen question,
receives a response from the user, and uses the information
acquired to update the belief. The process then repeats. For
disambiguation, a key feature of POMDP planning is the
principled trade-off between gaining additional information
by asking questions and the cost of doing so.

5.2.1 POMDP Model Our disambiguation POMDP
model, INGRESS-POMDP, is defined formally as a tuple
(X,A,Z, T,O,R):

• The state space X consists of a set of N candidate
objects. The referred object xR ∈ X is unknown in
advance.
• The action space A contains three types of actions:

ASKSELF(x), ASKREL(x), and PICK(x) for x ∈
X . ASKSELF(x) and ASKREL(x) are information-
gathering actions that ask a self-referential question
(e.g. “do you mean the blue cup?”) or a relational
question (e.g. “do you mean the cup on the
left?”) about the image regions corresponding to
x, respectively. Unlike similar actions for heuristic
disambiguation (Section 5.1), ASKSELF(x) and
ASKREL(x) are purely verbal, with no accompanying
physical pointing gestures. They are thus much
faster to execute. PICK(x) is a physical action that
commands the robot to finalize x as the desired object.
For N candidate objects, there are a total of 3N
actions.
• The observation space Z contains all possible user

answers in response to disambiguation questions.
Since there is no restriction on language expressions,
the observation space size |Z| is unbounded in the
worst case. For illustration, |Z| is on the order of 1060

for a vocabulary of 10,000 words and a maximum
sentence length of 15.
• T (x, a, x′): We assume that the user does not change

their mind about the referred object throughout the
entire interaction. So xR remains constant, and the
probabilistic state-transition function T (x, a, x′) =
p(x, a, x′) is 1 if x′ = x and 0 otherwise.

a x R(x, a)
PICK(x) x = xR 10
PICK(x) x 6= xR -10
ASKSELF(x) * -1
ASKREL(x) * -1

yes

yes

ASKSELF  (x  )

ASKSELF  (x  )

PICK  (x  )

PICK  (x  )

ASKREL  (x  )

ASKREL  (x  ) ASKSELF  (x  )

PICK  (x  )

ASKREL  (x  )

no

no yes no yes no yes no

yes no

Figure 5. A disambiguation belief tree of depth d = 2.

• O(x, a, z): The observation function O(x, a, z) =
p(z | x, a) captures the probability of a user’s verbal
response z to a question ASKSELF(x) or ASKREL(x).

• R(x, a): The reward function R(x, a) encourages the
robot to identify the referred object as fast as possible.
Each question, ASKSELF(x) or ASKREL(x), incurs a
small penalty to encourage asking for information but
not too many times. Picking the correct object results
in a large reward, and picking the wrong one results
in a large penalty. The reward values are empirically
chosen to reflect this behavior.

See Figure 4 for the graphical model.
One main challenge of constructing the INGRESS-POMDP

is observation modeling, as we allow unrestricted language
expressions. We decompose an utterance z ∈ Z into two
parts: response utterance zr and description utterance zd. The
response utterance corresponds to affirmatives represented
by a set of positive words Zp = {‘yes’, ‘yeah’, ‘yep’, ‘sure’}
or non-affirmatives represented by a set of negative words
Zn = {‘no’, ‘nope’, ‘nah’}. The description utterance zd
corresponds to any rich visual object description. Following
earlier work (Whitney et al. 2017), we assume conditional
independence and factor the observation model:

p(z | x, a) = p(zr | x, a) p(zd | x) (3)

The probability of observing the response utterance,
p(zr | x, a), is conditioned on the question asked. If the
question mentions the attributes of the referred object, the
user’s response likely contains positive words. Otherwise,
the response likely contains negative words. We assume that
the user is mostly truthful in answering the questions. For
simplicity, we specify a conditional probability table for
p(zr | x, a) manually:

zr ∈ Zp zr ∈ Zn

x = xR 0.99 0.01

x 6= xR 0.01 0.99

These values assume the user is cooperative 99% of the time,
but they can be easily learned from data as well.

The probability of observing the description utterance
p(zd | x) is simply the probability of generating the
description zd given the object x. This corresponds to
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(Equation 1) for self-referential expressions or (Equation 2)
for relational expressions. It is independent of the question
asked.

The enormous observation space poses significant com-
putational challenges. To achieve real-time user interaction,
we in fact use a simpified observation model for POMDP
planning (Section 5.2.2). However, we use the full observa-
tion model in (Equation 3) in order to retain the accuracy
in belief tracking (Section 5.2.3). This allows INGRESS to
balance computational efficiency and accuracy in reasoning.

5.2.2 POMDP Planning To solve the POMDP, we search
a belief tree (Figure 5). Each tree node represents a
belief over the referred object. The root node of the tree
corresponds to the current belief. A parent node and a child
node, with associated belief b and b′, are connected by an
action-observation pair. For example, if the robot has initial
belief b, takes the action of asking a question, and receives
the user response as an observation, the robot’s belief then
becomes b′. The tree search produces an action with the
highest expected total reward for the current belief.

We make two approximations to make the tree search
fast. The first deals with the enormous observation space.
Typically, fast online POMDP planning leverages sparsely
sampled observations during the forward search (see,
e.g., (Somani et al. 2013; Silver and Veness 2010)). In
our case, language expressions sampled in a word-by-word
fashion would be incoherent and irrelevant to the context.
So instead, we use an approximate observation model which
groups the observations according to the response utterance
and effectively, ignores the description utterance:

p(z | s, a) ≈ p(zr | x, a). (4)

This approximation dramatically reduces the observation
space size, while still allowing us to choose intelligently
between information-gathering actions. Consider a simple
scenario with two identical blue cups. The robot is instructed
to “pick up the cup”. Asking a self-referential question, e.g.,
“do you mean this blue cup?” would not change the belief
and resolve the ambiguity. In contrast, asking a relational
question, “do you mean this left cup?”, and receiving a “yes”
or “no” response helps in identifying the referred object.

The second approximation makes a reasonable assumption
on the length of disambiguation dialogs. In everyday life,
disambiguation typically takes no more than a few questions,
as more questions may simply be annoying to most people.
So we construct a belief tree of maximum depth d = 4.

The belief tree contains O(|A|d|Z|d) nodes, where |A|
is the size of the action space and |Z| is the size of the
observation space. In our case, |A| = 3N , for N candidate
objects. With the approximations, |Z| = 2 and d = 4. The
belief tree size is sufficiently small to allow for a full tree
search to choose the best action at each time step in real time.

5.2.3 Belief Update After the robot asks a disambiguation
question and receives an answer as the observation, it updates
the belief, using the full observation model in (Equation 3):

bt(x) =
1

Z
p(z | x, a) bt−1(x), (5)

where Z =
∑N

x=1 p(z | x, a) bt−1(x). The full observation
model accounts for both response and description utterances

Figure 6. An overview of the system architecture.

and handles correcting descriptions, such as “no, the blue
one”. It uses the full information in the user’s answer and
tracks the belief more accurately. The computation cost
is nevertheless modest, as belief update handles a single
observation received, unlike planning, which reasons about
many possible future observations.

6 System Implementation
To evaluate our approach, we implemented INGRESS on a
robot manipulator, with voice input and RGB-D sensing.
Below we briefly describe the system setup (Figure 6).

6.1 Visual Perception and Speech
Recognition

Our grounding model takes in as input an RGB image and a
textual referring expression, and outputs a 2D bounding box
containing the referred object in the image (Figure 6). Our
system uses a Kinect2 RGB-D camera for visual perception
and an Amazon Echo Dot device to synthesize the referring
expression from voice input.

6.2 Grounding Networks
The localization module for object detection uses a non-
maximum suppression threshold of 0.7 and a final output
threshold of 0.05 for minimal overlap between bounding
boxes in uncluttered scenes.

S-LSTM and R-LSTM have a vocabulary size of 10, 497
and 2, 020, respectively. The maximum sequence length for
both is 15 words.

6.3 Object Manipulation
Our system uses a 6-DOF Kinova MICO arm for object
manipulation. It is currently capable of two high-level
actions, PICKUP and PUTIT. For PICKUP, the system first
uses the Kinect2 depth data corresponding to the selected 2D
bounding box and localizes the referred object in 3D space.
It then plans a top-down or a side grasp pose based on the
object size, as well as a path to reach the pose. For PUTIT, the
system similarly identifies the placement location. It moves
the end-effector to position it directly above the desired
location and then simply opens up the gripper. This simple
set up is sufficient for our experiments. However, future
works could integrate state-of-the-art methods for grasping
and manipulating novel objects (Mahler et al. 2017).
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Figure 7. Perspective reprojection. For each bounding box localized in the camera perspective (left), a corresponding 3D
centroid is computed from depth data. This 3D centroid is reprojected onto the image plane of the new perspective (right)
using the camera’s projection matrix and 6-DOF pose. The aspect ratio of the box is maintained, while the size of the box is
scaled proportionally according to the ratio between distances d and d′. The reprojected bounding boxes are used to ground
relationships with perspective constraints.

6.4 Software and Hardware Platform
The entire system (Fig. 6), with components for RGB-D
visual perception, grounding, and manipulation planning,
is implemented under the Robot Operating System (ROS)
framework and runs on a PC workstation with an Intel
i7 Quad Core CPU and an NVIDIA Titan X GPU. The
grounding model runs on the GPU.

6.5 Perspective Correction
Referring expressions are conditioned on perspectives (Li
et al. 2016b): object-centric (e.g., “the bottle next to the
teddy bear”), user-centric (e.g., “the bottle on my left”), or
robot-centric (e.g., “the bottle on your right”). Object-centric
expressions are handled directly by the grounding model.
User-centric and robot-centric expressions require special
treatment. Handling perspectives reliably is a complex issue.
Here we provide a solution dealing with the simple, common
cases in a limited way. Given two detected viewpoints for
the user and the robot perspective, the system associates
a set of possessive keywords such as “my”, “your”, etc.
with each viewpoint. It then matches the input expression
against the keyword list to select a viewpoint and performs
a corresponding geometric transformation of detected 2D
image bounding boxes to the specified viewpoint frame
(Figure 7).

In our experiments, “my” and “your” viewpoints are
manually specified using an interactive 6-DOF marker tool
in ROS (Robot-Operating System) RViz∗. Future work could
integrate Kinect-based people detection and tracking to allow
dynamic updates of viewpoints.

7 Experiments

We evaluated our system under three settings. First,
we evaluated for grounding accuracy and generalization
to a wide variety of objects and relations on the
RefCOCO dataset (Kazemzadeh et al. 2014). Next, we
evaluated for generalization to rich language expressions in
robot experiments with humans. In both cases, INGRESS
outperformed UMD Refexp (Nagaraja et al. 2016). Finally,
we evaluated for effectiveness of disambiguation and found
that INGRESS-POMDP, through object-specific questions,

Dataset HGT (%) MCG (%)

UMD
Refexp INGRESS

UMD
Refexp INGRESS

Val 75.5 77.0 56.5 58.3

TestA 74.1 76.7 57.9 60.3

TestB 76.8 77.7 55.3 55.0

Table 1. Grounding accuracy of UMD Refexp and INGRESS
on the RefCOCO dataset, with human-annotated ground-
truth (HGT) object proposals and automatically generated
MCG object proposals.

sped up task completion by 1.9 times on average with respect
to a generic-question baseline.

In uncluttered scenes with 10–20 objects, the overall
voice-to-action cycle takes 2–5 seconds for voice-to-text
synthesis, retrieving the synthesized text from Amazon’s
service, grounding, visual perception processing, and
manipulation planning for picking or putting actions by
the 6-DOF robot arm. In particular, grounding takes
approximately 0.15 seconds.

7.1 RefCOCO Benchmark
The RefCOCO dataset contains images and corresponding
referring expressions, which use both self-referential and
relational information to uniquely identify objects in images.

∗RViz Markers: http://wiki.ros.org/interactive_markers

Figure 8. Experimental setup for robot experiments.
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The dataset covers a wide variety of different objects and
is well suited for evaluating generalization to unconstrained
object categories. Our evaluation measures the accuracy at
which a model can locate an image region, represented as
an image bounding box, given an expression describing it
unambiguously.

We compared INGRESS with UMD Refexp (Nagaraja et al.
2016) on the RefCOCO dataset. UMD Refexp’s approach
to relational grounding is similar to that of INGRESS (see
Section 4.3), but there are two key differences. First, UMD
Refexp uses feature vectors from an image-net pre-trained
VGG-16 network, whereas INGRESS uses captioning-trained
feature vectors from the self-referential grounding stage.
Second, for images with more than 10 object proposals,
UMD Refexp randomly samples 9 candidates for relational
grounding, while INGRESS only examines the pairs of
objects proposals chosen by the self-referential grounding
stage. Although INGRESS is trained with data from both
Visual Genome and RefCOCO, we only evaluate on
RefCOCO’s test set, because Visual Genome does not
contain relational expressions and UMD Refexp makes a
strong-assumption on pair-wise annotations.

7.1.1 Procedure The RefCOCO dataset consists of a
training set, a validation set (Val), and two test sets (TestA
and Test B). TestA contains images with multiple people.
TestB contains images with multiple instances of all other
objects. TestA contains 750 images with 5657 expressions.
TestB contains 750 images with 5095 expressions. Val
contains 1500 images with 10834 expressions. Following
UMD Refexp, we use both human-annotated ground-
truth object proposals and automatically generated MCG
proposals (Arbeláez et al. 2014) in our evaluation.

7.1.2 Results The results are reported in Table 1. The
correctness of a grounding result is based on the overlap
between the output and the ground-truth image regions. The
grounding is deemed correct if the intersection-over-union
(IoU) measure between the two region is greater than 0.5.
Table 1 shows that INGRESS outperforms UMD Refexp in
most cases, but the improvements are small. INGRESS adopts
a two-stage grounding process in order to reduce the number
of relevant object proposals processed in complex scenes. On
average, the validation and test sets contain 10.2 ground-
truth object proposals and 7.4 MCG object proposals per
image. As the number of object proposals per image is small,
the two-stage grounding process does not offer significant
benefits.

We also observed that images containing people have
greater improvement in accuracy than those containing
only objects. This likely results from the large bias in the
number of images containing people in the Visual Genome
dataset (Krishna et al. 2016). Future work may build a more
balanced dataset with a greater variety of common objects
for training the grounding model.

7.2 Robot Experiments
We also assessed the performance of our grounding
model in a realistic human-robot collaboration context
and particularly, to study its ability in handling rich
language expressions. In our experiments, a group of

participants provided natural language instructions to a 6-
DOF manipulator to pick and place objects (Figure 8).

Again, we compared INGRESS with UMD
Refexp (Nagaraja et al. 2016). We also conducted an
ablation study, which compared pure self-referential
grounding (S-INGRESS) and the complete model with both
self-referential and relational grounding. For S-INGRESS, we
directly used the image region with the lowest cross-entropy
loss from the self-referential stage. For INGRESS, we
used the region chosen by the full model. Further, both S-
INGRESS and INGRESS, used the object proposals generated
by the self-referential stage, whereas UMD Refexp used
MCG proposals (Arbeláez et al. 2014). All methods used
a large number of object proposals. So the probability of
randomly picking the referred object was very low.

7.2.1 Procedure Our study involved 16 participants (6
female, 10 male) recruited from a university community. All
subjects were competent in spoken English. Each participant
was shown 15 different scenarios with various household
objects arranged in an uncluttered manner.

In each scenario, the experimenter asked the participant
to describe a specific object to the robot. The experimenter
gestured at the object without any language descriptions.
Before instructing the robot, the subjects were given general
guidelines to provide descriptions that are simple and
unambiguous for this set of experiments aimed at assessing
grounding accuracy. The only hard restriction was that
perspectives e.g. ‘my left’, should be stated explicitly, but
otherwise the experimenter made no attempt to intervene or
alter the utterance if the user did not follow the guidelines.
Upon receiving an expression, all 3 models (S-INGRESS,
INGRESS, UMD Refexp) received the same image and
expression as input, and 3 trials were run back-to-back on
the robot in a fixed order. A trial was considered successful
if the robot located the specified object on its first attempt.
The success was assessed by the experimenter, without any
feedback from the participant.

The average number of objects per scenario was 8. And the
maximum number of identical objects was 3. The scenarios
were carefully designed such that 66% required relational
cues, 33% involved perspective taking, and 100% required
self-referential information. For assessing perspectives, the
participant was positioned at one of the four positions around
the robot: front, behind, left, right. Also, since the models
were trained on public datasets, all objects used in the
experiments were ‘unseen’. However, generic objects like
apples and oranges had minimal visual differences to the
training examples.

7.2.2 Results The results (Fig. 9) show that overall
INGRESS (76.7%) significantly outperforms both S-INGRESS
(53.3%, p < 0.001 by t-test) and UMD Refexp (31.3%, p <
0.001 by t-test). S-INGRESS is effective in locating objects
based on self-referential information. However, it fails
to infer relationships, as each image region is processed
in isolation. While UMD Refexp in principle makes
use of both self-referential and relational information, it
performs poorly in real-robot experiments, particularly,
in grounding self-referential expressions. UMD Refexp is
trained on a relatively small dataset, RefCOCO, with mostly
relational expressions. Its ability in grounding self-referential
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Figure 9. Grounding accuracy in robot experiments with
humans. Error bars indicate 95% confidence intervals.

expressions is inferior to that of INGRESS and S-INGRESS.
Further, INGRESS uses relevancy clustering to narrow down
a set of object proposals for relationship grounding, whereas
UMD Refexp examines a randomly sampled subset of object
proposal pairs, resulting in increased errors. Finally, UMD
Refexp is incapable of handling perspectives, as it is trained
on single images without viewpoint information.

During the experiments, we observed that referring
expressions varied significantly across participants. Even
a simple object such as an apple was described in many
different ways as “the red object”, “the round object”,
“apple in middle”, “fruit” etc. Likewise, relations were also
described in many different ways. 41/240 expressions from
participants used non-binary relations, e.g., “the can in the
middle”, “the second can”, etc.

Occasionally, participants used complex ordinality con-
straints, e.g., “the second can from the right on the top row”.
None of the models examined here, including INGRESS, can
handle ordinality constraints. Other common failures include
text labels and brand names on objects, e.g., “Pepsi”.

7.3 Disambiguation
We conducted a user study to examine the effectiveness of
INGRESS in asking disambiguating questions. Specifically,
we examined two issues:

• Does our approach of asking object-specific questions
improve grounding in terms of the time required to
resolve ambiguities?
• Are the generated questions effective in obtaining the

required additional information from the user?

The study compared the effectiveness of three methods:
generic-question iteration (baseline), INGRESS-Heuristic, and
INGRESS-POMDP. The baseline method generic-question
iteration, is similar to the work of Hatori et al. (2018).
There, the robot exhaustively points at objects while asking
a generic question “do you mean this object?”, and expects a
yes/no answer from the user. In contrast, INGRESS-Heuristic
asks object-specific questions (e.g., “do you mean this red
cup?”) based on the heuristic described in Section 5.1, and
the user may provide a correcting response (e.g., “no, the
red cup on the right”). Similarly, INGRESS-POMDP also asks
object-specific questions, except the question asking is based
on the decision-theoretic model described in Section 5.2.
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Figure 10. Disambiguation performance measured by the
average number of questions asked (lower is better). Error bars
indicate 95% confidence intervals.
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Figure 11. User survey on the robot’s effectiveness in commu-
nicating the additional information required for disambiguation
(higher is better). Error bars indicate 95% confidence intervals.

7.3.1 Procedure The study was conducted with 24
participants. 8 participants for the baseline condition, 8
participants for INGRESS-Heuristic, and 8 participants for
INGRESS-POMDP. Each subject was shown 10 different
scenarios with various household object. For each scenario,
the experimenter initiated the trial by giving the robot an
ambiguous instruction e.g., “pick up the cup” in scene
with a red cup, blue cup, green cup and yellow cup. For
INGRESS-Heuristic, the robot pointed to one of the candidate
objects, and asked a question. For INGRESS-POMDP, the
robot directly asked a question since it maintains an explicit
belief over objects without having to point at them (see
Section 5.2.1). Then the participant was instructed to correct
the robot to pick another object of the same category. Again,
the experimenter gestured at the desired object without any
verbal communication. For the baseline, the participants
could only use yes/no corrections. For INGRESS-Heuristic
and INGRESS-POMDP, they could correct the ambiguous
expression with additional information e.g., “no, the red cup”
or “no, the cup on the left”.

The average number of objects per scenario was 4.6. These
scenarios were different to that in Shridhar and Hsu (2018)
in that they were more ambiguous and typically required
asking 1-2 more questions. We conducted a total of 240
trials. In all successful trials, the participants were eventually
able to correct the robot to find the object specified by
the experimenter. If the robot stopped asking questions and
picked the wrong object, the trial was recorded as a failure.
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Figure 12. A sample of interactive grounding results. Red boxes indicate the objects chosen by INGRESS. Blue dashed
boxes indicate candidate objects. The first two rows show successful results and disambiguation questions. The last row
shows some failure cases.

7.3.2 Results Figure 10 shows that INGRESS-POMDP
(average 1.45 questions) is more efficient in disambiguation
than the baseline method (average 2.75 questions), with
p < 0.001 by the t-test. INGRESS-POMDP is also faster
than INGRESS-Heuristic (average 1.99 questions), with p =
0.01 by the t-test. While the differences appear small, they
are statistically significant. More importantly, the difference
is likely practically significant. The results indicate that
INGRESS-POMDP usually asks 1 to 2 disambiguation
questions, which are common in our daily life. However,
INGRESS-Heuristic asks 2 questions on the average and
sometimes 3 or more questions, which would be annoying.
While the difference of one question appears small, it
is important for fluid user interaction. The success rates
of INGRESS-POMDP (89%) and INGRESS-Heuristic (88%)
were similar. So INGRESS-POMDP reduced the number of
questions asked without reducing the overall accuracy. In
effect, INGRESS-POMDP’s questions are more effective in
reducing the robot’s uncertainty in the referred object and
provide potentially more natural user interaction. Further,
in terms of raw execution time, INGRESS-POMDP was
significantly faster than the other two methods, since the
question asking was purely verbal and did not involve a
pointing gesture. The pointing gesture typically takes an
additional 1–4 seconds for planning and execution.

We also conducted a post-experiment survey and asked
participants to rate the agreement question “the robot is
effective in communicating what additional information is
required for disambiguation” on a 5-point Likert scale. Since
INGRESS-POMDP and INGRESS-Heuristic are similar in that
they both ask object-specific questions, we administered
the survey only to INGRESS-POMDP and yes/no baseline

participants. Again, our method of asking object-specifc
questions with INGRESS-POMDP scores much higher than
the baseline method, 4.25 versus 1.63 with a significance of
p < 0.001 by the Kruskal-Wallis test (Figure 11).

During the experiment, we noted that participants used
some back-referring anaphora, e.g., “no, the other cup”,
which occurred in 11/160 expressions. Also, the participants
quite often mimicked the language that the robot used.
For example, when robot asks “do you mean this apple
on the bottom right?”, the user responds “no, the apple
on the top left”. A few participants also commented
that they would not have used certain descriptions, e.g.,
“top left”, if it were not for the robot’s question. This
is consistent with the psycholinguistic phenomenon of
linguistic accommodation (Gallois and Giles 2015), in which
participants in a conversation adjust their language style
and converge to a common one. It is interesting to observe
here that linguistic accommodation occurs not only between
humans and humans, but also between humans and robots.
Future works could study this in more detail.

7.4 Examples
Figure 12 shows a sample of interactive grounding
results. Figure 12(a–b) highlight rich questions generated
by INGRESS. The questions are generally clear and
discriminative, though occasionally they contain artifacts,
e.g., “ball in the air” due to biases in the training
dataset. Further, although our system is restricted to binary
relations, Figure 12(c–d) show some scenes that contain
complex, seemingly non-binary relationships. The referred
apple is at the bottom right corner of the entire image,
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Figure 13. A sample scenarios for disambiguation with
INGRESS-POMDP. The red bars above the objects plot
the robot’s belief on the referred object before asking
the question.

treated as a single object. Likewise, the selected blue
cup is the closest one to the left edge of the image.
Figure 12(e–f ) showcase user-centric and robot-centric
perspective corrections, respectively. They enable users to
adopt intuitive viewpoints such as “my left”. Figure 12(g–
i) show some common failures. INGRESS has difficulty with
cluttered environments. Partially occluded objects, such as
Figure 12(g), often result in false positives. It also cannot
handle complex relationships, such as Figure 12(h), which
requires counting (“third”) or grouping objects (“row”,

“all four”). Figure 12(i) is an interesting case. The user’s
intended object is the second cup from the left, but the input
expression is ambiguous. While the generated question is
not discriminative, the robot arm’s pointing gesture helps to
identify the correct object after two questions.

Figure 13 shows a sample scenario for disambiguation
with INGRESS-POMDP. The robot is instructed to “pick up
that cup” in a scene with three blue cups, two red cups
and a few other objects. Initially (t = 1), the robot has a
uniform belief over the cups and decides to ask a self-
referential question “do you mean a blue cup on the table?”,
as the question provides the maximum expected gain in
information. When the user responds “no, the red one”, the
robot eliminates all “blue cups”, and the belief concentrates
on the two remaining red cups (t = 2). The robot then asks
a relational question “do you mean the cup on the left?”, as
asking more about self-referential attributes does not provide
additional information. The user responds “no, the other
one”. The robot eliminates the left red cup and directly
picks right one (t = 3). INGRESS-POMDP generates all the
questions automatically without any handcrafted rules. It
is also important to note that the history of interactions
is critical for grounding responses such as “no, the red
one”. The underlying belief representation maintained by
INGRESS-POMDP enables the robot to infer that the user is
referring to the “red cup” and not the “red apple” in the
scene. For more examples, see the accompanying video at
http://bit.ly/INGRESSpomdp

8 Discussion

While the experimental results are promising, INGRESS has
several limitations (see Figure 12). First, it handles only
binary relations between the referred and context objects.
While this assumption is sufficient to cover the common
situations, it is not easy to scale up the network to handle
situations involving tertiary or n-nary relations. Recent work
on relation networks (Santoro et al. 2017) grounds complex
relationships by learning a joint embedding of all pair-
wise permutations of objects. Training such a network on
complex relationship corpora (Johnson et al. 2017a) may
help. Further, integrating non-verbal cues such as gestures
and gaze (Palinko et al. 2016; Fischer and Demiris 2016)
may reduce the need for interpreting complex instructions
as some ambiguities can be resolved through body language
cues. Second, INGRESS relies on keyword matching
to understand perspectives. Sometimes these keywords
might not be explicitly stated in the referring expression.
So augmenting the training set with perspective-bearing
expressions could allow the system to generalize better.
Third, the clustering components of the grounding model
are currently hard-coded. A more sophisticated method such
as spectral clustering (Cherouvim and Papadopoulos 2005)
may improve performance. Another possibility is to treat
the clustering components as neural network modules, the
grouping of relevant objects can be learned simultaneously
with other components. Lastly, INGRESS cannot handle
cluttered environments with partially occluded objects.
Systematically moving away objects to reduce uncertainty
(Li et al. 2016a) may help.
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9 Conclusion
We have presented INGRESS, a neural network model
for grounding unconstrained natural language referring
expressions. By training the network on large datasets,
INGRESS handles a wide variety of everyday objects. In
case of ambiguity, INGRESS-POMDP asks object-specific
disambiguating questions in a principled manner. The system
a state-of-the-art method substantially in robot experiments
with humans and generated interesting interactions for
disambiguation of referring expressions. Even though we
are far from achieving a perfect shared understanding of the
world between humans and robots, we hope that our work is a
step in this direction. It points to several important issues for
further investigation (Section 8). An even more important,
but different direction is to connect with the grounding of
verbs (Kollar et al. 2010) to expand the repertoire of robot
actions, as well as a range of other interesting language
grounding problems (Paul et al. 2017; Nyga et al. 2018).
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