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Abstract: Particle filtering is a powerful approach to sequential state estimation and
finds application in many domains, including robot localization, object tracking, etc.
To apply particle filtering in practice, a critical challenge is to construct probabilistic
system models, especially for systems with complex dynamics or rich sensory
inputs such as camera images. This paper introduces the Particle Filter Network (PF-
net), which encodes both a system model and a particle filter algorithm in a single
neural network. The PF-net is fully differentiable and trained end-to-end from data.
Instead of learning a generic system model, it learns a model optimized for the
particle filter algorithm. We apply the PF-net to a visual localization task, in which
a robot must localize in a rich 3-D world, using only a schematic 2-D floor map.
In simulation experiments, PF-net consistently outperforms alternative learning
architectures, as well as a traditional model-based method, under a variety of sensor
inputs. Further, PF-net generalizes well to new, unseen environments.

Keywords: sequential state estimation, particle filtering, deep neural network,
end-to-end learning, visual localization

1 Introduction

Particle filtering, also known as the sequential Monte-Carlo method, is a powerful approach to
sequential state estimation [1]. Particle filters are used extensively in robotics, computer vision,
physics, econometrics, etc. [2, 3, 4, 5, 6, 7], and are critical for robotic tasks such as localization [8],
SLAM [9], and planning under partial observability [10]. To apply particle filters in practice, a major
challenge is to construct probabilistic system models or learn them from data [11, 12, 13]. Consider,
for example, robot localization with an onboard camera (Figure 1a). The observation model is a
probability distribution over all possible camera images, conditioned on a continuous robot state and
an environment map. Learning such a model is challenging, because of the enormous observation
space and the lack of sufficient labeled data. An emerging line of research circumvents the difficulty
of traditional model learning: it embeds an algorithm into a deep neural network and then performs
end-to-end learning to train a model optimized for the specific algorithm [14, 15, 16, 17, 18].

In this direction, we introduce the Particle Filter Network (PF-net), a recurrent neural network (RNN)
with differentiable algorithm prior for sequential state estimation. A PF-net encodes learnable
probabilistic state-transition and observation models together with the particle filter algorithm in a
single neural network (Figure 1b). It is fully differentiable and trained end-to-end from data. PF-net
tackles the key challenges of learning complex probabilistic system models. Neural networks are
capable of representing complex models over large spaces, e.g., observation models over images.
Further, the network representation unites the model and the algorithm and thus allows training
end-to-end. As a result, PF-net learns system models optimized for a specific algorithm, in this case,
particle filtering, instead of learning generic system models. The models may learn only the features
relevant for state estimation, thus reducing the complexity of learning.

We apply PF-net to robot visual localization, which is of great interest to mobile robotics. A robot
navigates in a previously unseen environment and does not know its own precise location. It must
localize in a visually rich 3-D world, given only a schematic 2-D floor map and observations from
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Figure 1: (a) Robot visual localization in a 3-D environment, using only a schematic 2-D floor
map. The robot must match rich 3-D visual features with crude 2-D geometric features from the
map. It must also ignore objects not in the map, e.g., furniture. (b) PF-net encodes both a learned
probabilistic system model and the particle filter algorithm in a single neural network. It trains the
model end-to-end in the context of the particle filter algorithm, resulting in improved performance.

onboard sensors (Figure 1a). While particle filtering is the standard approach for LIDAR [8], we
consider visual sensors, e.g., cameras. Now the probabilistic observation model must match rich
3-D visual features from camera images to crude 2-D geometric features from the map. Further,
the camera images may contain various objects not in the map, e.g., furniture. This task exhibits
key difficulties of state estimation from ambiguous, partial observations. A standard model-based
approach would construct an observation model as a probability distribution of images conditioned
on the floor map and robot pose. This is difficult, because of the enormous observation space, i.e., the
space of all possible images showing various floor layouts, furniture configurations, etc. In contrast,
PF-net trains a model end-to-end and learns only features relevant to the localization task.

This paper makes two contributions. First, we encode a particle filter algorithm in a neural network to
learn models for sequential state estimation end-to-end. Second, we apply PF-net to visual localization
and present a network architecture for matching rich visual features of a 3-D world with a schematic
2-D floor map. Simulation experiments on the House3D data set [19] show that the learned PF-net
is effective for visual localization in new, unseen environments populated with furniture. Through
end-to-end training, it also outperforms a conventional model-based method; it fuses information
from multiple sensors, in particular, RGB and depth cameras; and it naturally integrates semantic
information for localization, such as map labels for doors and room types.

2 Background

2.1 Related work

The idea of differentiable algorithm priors, i.e., embedding algorithms into a deep neural network,
has been gaining attention recently. It has led to promising results for graph search [16, 17, 20],
path integral optimal control [21], quadratic optimization [18, 22], and decision-making in fully
observable environments [14] and partially observable environments [15, 23].

The general idea, when applied to probabilistic state estimation, has led to, e.g., Kalman filter net-
work [24] and histogram filter network [25]. However, Kalman filtering assumes that the underlying
state distribution is or can be well approximated as a unimodal Gaussian. Histogram filtering assumes
discrete state spaces and has difficulty in scaling up to high-dimensional state spaces because of
the “curse of dimensionality”. To tackle arbitrary distributions and very large discrete or continuous
state spaces, one possibility is particle filtering. Concurrent to our work, Jonschkowski et al. have
been independently working on the idea of differentiable particle filtering [26]. The work is closely
related, and we want to highlight several important differences. First, we propose a differentiable
approximation of resampling, a crucial step for many particle filter algorithms. Next, we apply PF-net
to visual localization in new, unseen environments, after learning. While the concurrent work also
deals with localization, it does so in a fixed environment. Finally, our observation model for visual
localization matches rich 3-D visual feature with a schematic 2-D floor map, ignores objects not in
the map, and fuses information from multiple sources. Neural networks have been used with particle
filters in variational learning as well. Unlike the PF-net, such networks aim to parameterize a family
of generative distributions over observations [27, 28, 29, 30], thus making them unsuitable for large,
complex observation spaces, such as the space of camera images and floor maps.

Particle filter methods, e.g., Monte-Carlo localization [8], are standard solutions to mobile robot
localization. Many such methods assume a LIDAR sensor mounted on the robot and rely on
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handcrafted simple analytic observation models [31]. While there have been attempts to incorporate
monocular or depth cameras [32, 33, 34, 35], constructing probabilistic observation models for them
remains a challenge. PF-net learns effective system models through end-to-end training, without
direct supervision on model components.

2.2 Particle filter algorithm

Particle filters periodically approximate the posterior distribution over states after an observation is
received, i.e., they maintain a belief over states, b(s). The belief is approximated by a set of particles,
i.e., weighted samples from the probability distribution,

bt(s) ≈ 〈skt , wk
t 〉k=1:K , (1)

where
∑

k wk =1, K is the number of particles, sk is the particle state, wk is the particle weight, and
t denotes time. Importantly, the particle set can approximate arbitrary distributions, e.g., continuous,
multimodal, non-Gaussian distributions. The state estimate can be computed by the weighted mean,
st =

∑
k w

k
t s

k
t . The particles are periodically updated in a Bayesian manner. First, the particle states

are updated by sampling from a probabilistic transition model,

skt ∼ T (st|ut, skt−1), (2)

where the transition model, T , defines the probability of a state, st, given a previous state, skt−1, and
the last action, ut. In the case of robot localization ut is the odometry input. Second, the particle
weights are updated. The likelihood, fkt , is computed for each particle,

fkt = Z(ot|skt ;M), (3)

where the observation model, Z, defines the conditional probability of an observation, ot, given a
state and the 2-D floor map, M. Particle weights are updated according to the likelihoods,

wk
t = ηfkt w

k
t−1, (4)

where η−1 =
∑

j=1:K f jt w
j
t−1 is a normalization factor.

One common issue is particle degeneracy, i.e., when most particles have near-zero weight. The
issue can be addressed by resampling particles. New particles are sampled from the current set with
repetition, where a particle is chosen with a probability proportionate to its weight,

p(k) = wk
t . (5)

The weights are updated according to a uniform distribution,

w′kt = 1/K. (6)

The new particle set approximates the same distribution, but devotes its representation power to the
important regions of the belief space. Note that the new set may contain repeated particles, but they
diverge after stochastic transition updates.

3 Particle Filter Network

The Particle Filter Network (PF-net) encodes learnable transition and observation models, together
with the particle filter algorithm, in a single neural network (Figure 1b). PF-net is a RNN with differ-
entiable algorithm prior, that is, structure specific to sequential state estimation. The differentiable
algorithm prior in PF-net is particle filtering: the particle representation of beliefs, and Bayesian
updates for transitions and observations. Compared to generic architectures, such as LSTM [36],
these priors allow much more efficient learning.

The key idea underlying our approach is the unified representation of a learned model and an inference
algorithm. The model is a neural network, i.e., a computation graph with trainable parameters.
The inference algorithm is a differentiable program, i.e., a computation graph with differentiable
operations. Both the model and the algorithm can be encoded in the same computation graph. What
is the benefit? Unlike conventional model learning methods, PF-net can learn a model end-to-end,
backpropagating gradients through the inference algorithm. The model is now optimized for a specific
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Figure 2: PF-net as a computation
graph. The state-transition and obser-
vation models are captured in network
weights, which are shared across the
particles.
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Figure 3: The PF-net observation model. The inputs
are floor map M, observation ot, and particle state skt .
The output is particle likelihood fkt . CNN, LFC and
FC are convolutional, locally fully-connected, and fully
connected network components, respectively.

inference algorithm and a specific task. As a result, the model may not need to capture complex
conditional probability distributions, instead, it may learn only the features relevant to the task.

Specifically, PF-net encodes the particle filtering steps, (1)-(6), in a computation graph (Figure 2).
The transition and observation models, (2) and (3), are trainable neural networks with appropriate
structure. Learned network weights are shared across particles. The rest of the computation graph is
not learned, but rather, it implements the operations (1)-(6). Importantly, these operations must be
differentiable to allow backpropagation. This is an issue for sampling from a learned distribution
in (2), and resampling particles in (5)-(6).

The sampling operation (2) is not differentiable, but it can be easily expressed in a differentiable
manner using the “reparameterization trick” [37, 38]. The trick is to take a noise vector as input, and
express the desired distribution as a deterministic, differentiable function of this input. The function
may have learnable parameters, e.g., the mean and variance of a Gaussian. Particle resampling poses
a different issue: new particle weights are set to constant in (5), which produces zero gradients. We
address the issue by introducing soft-resampling, a differentiable approximation based on importance
sampling. Instead of sampling particles from the desired distribution p(k), we sample from q(k), a
combination of p(k) and a uniform distribution,

q(k) = αwk
t + (1− α)1/K, (7)

where α is a trade-off parameter. The new weights are computed by the importance sampling formula,

w′kt =
p(k)

q(k)
=

wk
t

αwk
t + (1− α)1/K

. (8)

This operation has non-zero gradient when α 6= 1. Soft-resampling trades off the desired sampling
distribution (α = 1) with the uniform sampling distribution (α = 0). It provides non-zero gradients
by maintaining the dependency on previous particle weights. An alternative to soft-resampling is to
simply carry over particles to the next step, without resampling them. We found this to be a good
strategy when training in a low uncertainty setting, i.e., when most particles remain close to the
underlying true states. Soft-resampling worked better under high uncertainty, where most particles
would deviate far from the true states.

We have now introduced the PF-net architecture in a general setting. When applying PF-net to a
particular task, we must choose the representation of states, and the network architecture for T and Z.
Note that we may use different number of particles during training and during evaluation.

4 Visual localization

We apply PF-net to visual localization (Figure 1). A robot navigates in an indoor environment it has
not seen before. The robot is uncertain of its location. It has an onboard camera, odometry, and it
receives a schematic 2-D floor map. The task is to periodically estimate the location from the history
of sensor observations. Formally, we seek to minimize the mean squared error,

L =
∑

t

(xt − x∗t )2 + (yt − y∗t )2 + β(φt − φ∗t )2, (9)
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where xt, yt, φt and x∗t , y
∗
t , φ
∗
t are the estimated and true robot poses for time t, respectively; β is a

constant parameter.

Challenges are threefold. First, we must periodically update a posterior over states given ambiguous
observations, where the posterior is a multimodal, non-Gaussian, continuous distribution. PF-net
tackles the challenge by encoding suitable differentiable algorithm prior, i.e., particle filtering.

Second, we need to build an observation model, Z(ot|skt ;M), that defines the probability of a camera
observation, ot, conditioned on the particle state, skt , and the floor map, M. A generative observation
model would be hard to learn: it is a conditional distribution of images that show environments with
different layouts, different furniture in different configurations, etc. PF-net learns a discriminative
model instead, which takes skt , ot and M as inputs, and the particle likelihood as output. The
discriminative model only needs to learn features relevant to localization. Importantly, PF-net learns
the discriminative model end-to-end, without supervision on the particle likelihoods.

Third, the observation model must compare geometry extracted from a schematic 2-D map and a
camera image. This is especially hard for visually rich environments, where some objects in the
environment are not in the map, e.g., furniture. We introduce a neural network with appropriate
structure for the observation model (Figure 3). The observation model defines the particle likelihood
by appropriately combining features of the map and the camera image. First, a local map is obtained
from M and skt through an affine image transformation. For a neural network implementation we
adopt the Spatial Transformer Network [39]. An affine transformation matrix, Ak, is computed
for each particle, such that the transformed map is a local view from the pose, skt . Because of
this transformation, our network applies to any map size. Next, we extract features both from the
local map and the camera image through separate learned CNN components. The feature maps are
concatenated, fed to a locally fully connected layer, reshaped to a vector, and fed to a final fully
connected layer. The output is a scalar, fkt , the likelihood of the particle state.

The details of the PF-net are as follows. Inputs are image observations, ot, odometry, ut, and the
map, M. The output is the continuous pose, st ={xt, yt, φt}. Particles are pairs of a candidate pose,
skt , and weight, wk

t . The output is the weighted mean of particles. The loss for end-to-end training, L,
is defined by (9). The observation and transition models, Z and T , are neural network components.
We discussed the observation model above. The transition model updates the particle state given the
odometry input, ut, which is the relative motion defined in the robot coordinate frame. Our neural
network transforms ut to the global coordinate frame, u′t, and adds it to the previous pose along
with Gaussian noise. Formally, we sample the new particle state from the differentiable function,
T (skt |u′t, skt−1) = skt−1 +u′t + diag(σt, σt, σr)N (0; I), whereN (0; I) is noise input from a standard
multivariate Gaussian; σt and σr are standard deviations for translation and rotation, respectively. In
experiments we chose σt and σr manually; however, they could be learned in the future.

5 Simulation experiments

We implemented1 and evaluated PF-net in simulation for robot visual localization in indoor envi-
ronments. We compared with several alternative methods to examine the benefits of differentiable
algorithm priors and those of end-to-end training. We evaluated PF-net for various visual and depth
sensor. Finally, we evaluated PF-net with increasing levels of uncertainty when the robot’s initial
belief changes from a distribution concentrated around its true pose to that of one spread uniformly
over the entire space. The results are summarized in Table 1.

5.1 Experimental setup

Simulation. We conducted experiments in the House3D simulator [19], which builds on a large
collection of human-designed, realistic residential buildings from the SUNCG data set [40]. On
average, the building size is 206 m2, and the room size is 37 m2. See Figure 4 for examples.

Tasks. We consider localization with various levels of uncertainty. For tracking, the initial belief is
concentrated around the true state. For global localization, the belief is uniform over all rooms in a
building. In between, for semi-global localization, the belief is uniform over one or more rooms.

1 Our Tensorflow implementation is available at https://github.com/AdaCompNUS/pfnet.
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Sensors. We considered a monocular RGB camera, a depth camera, an RGB-D camera, and a
simulated 2-D LIDAR. Following earlier work [35], our simulated LIDAR simply transforms a
depth images to a 2-D laser scan. The simulated LIDAR has a limited resolution of 54 beams and
60◦ field of view. As a result, localization with the simulated LIDAR is harder compared with a
typical real-world LIDAR. We also considered a simplified environment, LIDAR-W, for the LIDAR
sensor by removing all furniture from the environment and leaving only the walls. This way, the
corresponding floor map contains all geometric objects in the environment.

Training. The training data consists of 45,000 trajectories from 200 buildings. Trajectories are
generated at random: the robot moves forward (p=0.8) or turns (p=0.2). The distance and the
turning angle are sampled uniformly from the ranges [20 cm, 80 cm] and [15◦, 60◦], respectively.
Each trajectory is 24 steps long, and each step is labeled with the true robot pose. The robot’s initial
belief b0 is a multivariate Gaussian distribution. The center of b0 is perturbed from the true pose
according to a Gaussian with zero mean and covariance matrix Σ=diag(30 cm, 30 cm, 30◦), and the
the covariance of b0 is the same Σ. This setting corresponds to a tracking task. We trained PF-net and
alternative networks to minimize the end-to-end loss (9). We trained by backpropagation through
time, limited to 4 time steps. For training PF-net, we used K=30 particles. We did not resample
particles during training, as it is not required for short trajectories and concentrated initial beliefs.

Alternative methods. We compared PF-net with alternative network architectures, histogram
filter (HF) network [25] and LSTM network [36]. HF network represents the belief as a histogram
over discretized states, in this case, a grid with 40 cm × 40 cm cells and 16 orientations. Finer
discretization did not produce better results. The LSTM network relies on its hidden state vector
to represent the belief. We used a network architecture based on local maps, similar to the PF-net
observation model. Outputs are relative state estimates that are updated with the odometry. We also
considered a conventional particle filtering (PF) method with a handcrafted analytic observation
model. We used the beam model implementation from the AMCL package of ROS [41], a standard
model for localization with LIDAR [31]. The model parameters were tuned for our simulated LIDAR
sensor. Finally, to calibrate the results, we also considered Odometry-NF, which updates the belief
only with odometry, not with other sensor inputs.

Evaluation. We evaluated the methods on a fixed set of 820 trajectories in 47 previously unseen
buildings for tracking, semi-global localization, and global localization tasks. We used the same
setup and same model and algorithm parameters for all methods whenever possible. We trained
the networks once for the tracking task and did not retrain for the other tasks. It is important to
observe that for PF-net, the number of particles, K, used in execution does not have to be the same as
that for training. In particular, we used K=300 particles for tracking, K=1, 000 for semi-global
localization, and K up to 3, 000 for global localization. We also activated resampling for semi-global
and global localization. The same settings were applied to the PF method. For tracking, we report the
average root mean squared error (RMSE), computed for the robot position (Table 1a). For semi-global
and global localization, we report success rate on 100-step long trajectories (Table 1b,c). Localization
is successful if the estimation error is below 1 m for the last 25 steps of a trajectory. Finally, we
evaluated PF-net on semi-global localization with semantic maps (Table 1d).

5.2 Main results

Our main results compare PF-net with alternatives for different sensor inputs (Table 1a,b).

Differentiable algorithm priors are useful. PF-net consistently outperformed alternative end-to-
end learning architectures, HF network and LSTM network. Why? PF-net encodes differentiable
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RGB Depth RGB-D LIDAR LIDAR-W

PF-net 40.5 35.9 33.3 48.3 31.5
HF network 92.0 91.6 89.8 95.6 92.4
LSTM network 66.9 58.8 60.3 74.2 64.4
PF – – – 81.3 31.3
Odometry-NF 109.4 109.4 109.4 109.4 109.4

(a) RMSE (cm) for tracking.

K N = 1 N = 2 All

500 80.0% 70.5% 46.1%
1, 000 84.3% 80.1% 57.9%
2, 000 87.3% 84.8% 68.5%
3, 000 89.0% 85.9% 76.3%

(c) PF-net success rate (%) for semi-
global and global localization, with K
particles. The initial belief is uniform
over N = 1, N = 2, or all rooms.

RGB Depth RGB-D LIDAR LIDAR-W

PF-net 82.6% 84.0% 84.3% 69.4% 86.6%
HF network 2.7% 2.9% 4.5% 1.6% 2.2%
LSTM network 21.1% 24.4% 23.4% 17.2% 22.2%
PF – – – 25.1% 86.2%
Odometry-NF 1.1% 1.1% 1.1% 1.1% 1.1%

(b) Success rate (%) for semi-global localization over one room.

Labels RGB Depth RGB-D

None 82.6% 84.0% 84.3%
Doors 84.4% 83.9% 84.5%
Rooms 84.5% 86.2% 86.5%
Both 84.6% 86.7% 87.2%

(d) PF-net success rate (%) for semi-
global localization with additional se-
mantic information on doors, rooms
types, or both.

Table 1: Experimental comparison on robot visual localization.

algorithm prior specific to sequential state estimation, i.e., the particle representation of beliefs and
their Bayesian update. HF network encodes similar prior for updating beliefs, however, it is restricted
to a discrete belief representation which does not scale well to large and continuous state spaces. The
LSTM network is not restricted to a discrete state space, but it has no structure specific to probabilistic
state estimation, and it must rely on the hidden state vector to encode the belief.

End-to-end learning results in increased robustness. We compared the learned PF-net to PF with
a known LIDAR model. PF-net and PF performed similarly when only walls were present in the
environment. PF-net performed significantly better when some objects in the environment were not
in the map (LIDAR column). Why? The beam model has no principled way to distinguish relevant
walls from irrelevant objects, because it decouples the LIDAR scan to individual beams. Through
end-to-end training, PF-net may have learned relationships between beams to distinguish walls from
objects. PF-net may have also learned to deal with map imperfections, e.g., missing walls, glass
doors, and various map artifacts, which we observed occasionally in the House3D data set.

PF-net is effective for multiple sensing modalities. PF-net with RGB images is almost as effective
as with depth images; and it performs better than with simulated LIDAR. This indicates that PF-net
successfully learned to extract relevant geometry from RGB images, and it learned to ignore objects
that are not in the map. When combining RGB and depth image inputs, RGB-D column, performance
improves. This demonstrates that PF-net can learn simple sensor fusion end-to-end from data. Future
work in this direction is promising.

5.3 Additional results

Global localization. We evaluated learned PF-net for localization with increasing difficulty (Ta-
ble 1c). We chose initial beliefs uniform over one room, two rooms, and the entire building. We
compared PF-net with different number of particles, up to K=3000. Results show that PF-net can
solve global localization with high initial uncertainty when provided with sufficiently many particles.

Semantic maps. Humans often use floor maps with semantic information: there are labels for the
office, toilet, lift and staircase. Utilizing semantic maps for robot localization is not trivial [35, 42].
PF-net may learn to use semantic maps naturally, through end-to-end training. To demonstrate this,
we trained PF-nets with simplified semantic maps with labels for doors and room categories. See
Figure 5 for examples. We encoded the semantic labels in separate channels of the input map: one
channel for doors, 8 channels for 8 distinct room categories. Results show that simple semantic maps
can indeed improve localization performance (Table 1d).
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Figure 6: Global localization with PF-net (K = 1000) and RGB camera input. Red indicates
ground-truth poses. Black indicates PF-net particles. Green indicates the weighted mean of particles.

Ablation study. In supplementary experiments we altered certain settings of PF-net during training,
and evaluated the learned PF-nets for a fixed semi-global localization task. First, we added soft-
resampling during training. When trained for the tracking task as before, success rates decreased for
soft-resampling: 79% to 75%. However, when trained with increased initial uncertainty and noisy
odometry, success rates increased for soft-resampling: 39% to 42%. As expected, resampling can
be beneficial when most particles would be far from the true state; but it hurts when particles near
the true state are eliminated, which often happens in early phases of learning. Future work may
incorporate various strategies for resampling only when required [43]. Indeed, when resampling only
every second step, success rates increased: 42% to 54%.

Next, we varied the number of backpropagation steps for BPTT. Backpropagating through multiple
steps improved performance: 73%, 79%, 79% success rates for 1, 2, and 4 steps, respectively. This
indicates that loss from future steps can provide a useful learning signal for the present step.

Finally, we replaced our loss function (9), with the probabilistic loss function proposed in [26].
The alternative loss function worked worse when training in the standard tracking setting, 74%
versus 79% success rates. However, the alternative loss function worked better when training with
increased uncertainty, 67% versus 39%. Our loss can be dominated by the distant particles, which
may negatively affect learning in the latter case.

6 Conclusion & future work

We introduced the PF-net, a neural network architecture with differentiable algorithm prior for
sequential state estimation. PF-net encodes learned probabilistic models, together with a particle filter
algorithm, in a differentiable network representation. We applied PF-net to robot localization on a
map. Through end-to-end training, PF-net successfully learned to localize in challenging, previously
unseen environments populated with objects not shown in the map.

Future work may apply PF-net to real-world localization, a problem of great interest for mobile
robot applications. One concern is online execution. With RGB input PF-net needs approx. 0.6ms
per particle per step. Indoor localization with high uncertainty may require up to 1,000 – 10,000
particles [8]. We can increase robustness, and use less particles, by incorporating standard techniques
for particle filtering, e.g., injecting particles and adaptive resampling [43]. We may also improve
inference time, leveraging an abundance of work optimizing neural network models and hardware [44].
Finally, learned PF-net models can be used for standard particle filtering, and thus visual sensors can
be complementary to laser, potentially at a lower update frequency.

PF-net could also be applied to other domains, e.g., visual object tracking and SLAM. An exciting
line of future work may extend PF-net to learn latent state representations for filtering, potentially in
an unsupervised setting. Finally, the particle representation of beliefs can be important for encoding
more sophisticated algorithms in neural networks, e.g., for planning under partial observability.
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