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Abstract

The partially observable Markov decision process
(POMDP) provides a principled general framework for
robot planning under uncertainty. Leveraging the idea
of Monte Carlo sampling, recent POMDP planning al-
gorithms have scaled up to various challenging robotic
tasks, including, e.g., real-time online planning for au-
tonomous vehicles. To further improve online planning
performance, this paper presents IS-DESPOT, which
introduces importance sampling to DESPOT, a state-
of-the-art sampling-based POMDP algorithm for plan-
ning under uncertainty. Importance sampling improves
DESPOT’s performance when there are critical, but
rare events, which are difficult to sample. We prove
that IS-DESPOT retains the theoretical guarantee of
DESPOT. We demonstrate empirically that importance
sampling significantly improves the performance of on-
line POMDP planning for suitable tasks. We also
present a general method for learning the importance
sampling distribution.

1 Introduction

Uncertainties in robot control and sensing present sig-
nificant barriers to reliable robot operation. The partially
observable Markov decision process (POMDP) (Small-
wood and Sondik, 1973) provides a principled general
framework for robot decision making and planning un-
der uncertainty. While POMDP planning is computa-
tionally intractable in the worst case (Papadimitriou and
Tsisiklis, 1987), approximate POMDP planning algo-
rithms have scaled up to a wide range of challenging
tasks in robotics and beyond, e.g., autonomous driv-
ing (Bai et al., 2015), grasping (Hsiao et al., 2007), ma-
nipulation (Koval et al., 2016b), disaster rescue man-
agement (Wu et al., 2015), and intelligent tutoring sys-

∗The work was completed while the author was with the Depart-
ment of Computer Science, National University of Singapore.

tems (Folsom-Kovarik et al., 2013). Many of these re-
cent advances leverage probabilistic sampling for com-
putational efficiency. This work investigates effective
sampling distributions for planning under uncertainty
under the POMDP framework.

Intuitively, planning under uncertainty is difficult, be-
cause of the myriad future scenarios that could all affect
the optimality of a plan. To overcome the resulting com-
putational complexity, a very general idea is to sample a
finite set of scenarios as an approximate representation
of uncertainty and compute an optimal or near-optimal
plan under these sampled scenarios. Theoretical anal-
ysis reveals that a small number of sampled scenarios
guarantee near-optimal online planning, provided that
there exists an optimal plan with a compact representa-
tion (Somani et al., 2013). In practice, the sampling dis-
tribution plays a critical role in probabilistic sampling
algorithms and has significant impact on performance
(Kalos and Whitlock, 1986). Consider an autonomous
vehicle navigating among pedestrians. Hitting a pedes-
trian may have low probability, but very severe conse-
quence. Failing to sample these rare, but critical events
often results in sub-optimal plans.

Importance sampling (Kalos and Whitlock, 1986)
provides a well-established tool to address this chal-
lenge. We have developed IS-DESPOT (see Section 3),
which applies importance sampling to DESPOT (So-
mani et al., 2013), a state-of-the-art sampling-based on-
line POMDP algorithm. Like DESPOT, IS-DESPOT
searches for a near-optimal plan at every time step un-
der a set of sampled scenarios. However, it samples
the scenarios according to their “importance” rather than
their natural probability of occurrence. It then reweights
the samples when computing the plan. While the basic
idea of importance sampling is well known, the chal-
lenge here is to integrate it with DESPOT, which per-
forms lookahead search over a set of sampled scenarios.
Each sample in DESPOT or IS-DESPOT is not a sin-
gle event, but a sequence of interconnected events over
time. Further, the theory of importance sampling is well
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developed for Monte Carlo integration with indepen-
dent identically distributed samples. The samples used
in IS-DESPOT are not independent. Nevertheless, we
prove that IS-DESPOT retains the theoretical guarantee
of DESPOT. We also present experimental results show-
ing that importance sampling significantly improves the
performance of online POMDP planning for suitable
tasks (see Sections 5 and 6).

A crucial element of IS-DESPOT is the importance
sampling distribution. Constructing it manually is not
always easy and requires detailed domain knowledge.
We take a first step towards automating the importance
distribution construction and present a general method
for learning it offline (see Section 4).

2 Background

2.1 POMDP Preliminaries

A POMDP models an agent acting in a partially observ-
able stochastic environment. It is defined formally as a
tuple (S,A,Z, T,O,R, b0), where S, A and Z are the
state space, the action space, and the observation space,
respectively. The function T (s, a, s′) = p(s′|s, a) de-
fines the probabilistic state transition from s ∈ S to
s′ ∈ S, when the agent in state s ∈ S takes an action
a ∈ A. It can model imperfect robot control and envi-
ronment changes. The function O(s, a, z) = p(z|s, a)
defines a probabilistic observation model, which can
capture robot sensor noise. The functionR(s, a) defines
a real-valued reward for the agent when it takes action
a ∈ A in state s ∈ S.

Because of imperfect sensing, the agent’s state is not
known exactly. Instead, the agent maintains a belief,
which is a probability distribution over S. The agent
starts with an initial belief b0. At time t, it infers a new
belief, according to Bayes’ rule, by incorporating infor-
mation from the action at taken and the observation zt
received:

bt(s
′) = τ(bt−1, at, zt)

= ηO(s′, at, zt)
∑
s∈S

T (s, at, s
′)bt−1(s), (1)

where η is a normalizing constant.
A POMDP policy prescribes the action at a belief.

The goal of POMDP planning is to choose a policy π
that maximizes its value, i.e., the expected total dis-
counted reward, with initial belief b0:

Vπ(b0) = E
( ∞∑
t=0

γtR(st, at+1)
∣∣∣ b0, π) (2)

where st is the state at time t, at+1 = π(bt) is the ac-
tion that the policy π chooses at time t, and γ ∈ (0, 1)

is a discount factor. The expectation is taken over the
sequence of uncertain state transitions and observations
over time.

A key idea in POMDP planning is the belief tree (Fig-
ure 1a). Each node of a belief tree corresponds to a be-
lief b. At each node, the tree branches on all actions in
A and all observations in Z. If a node with belief b has a
child node with belief b′, then b′ = τ(b, a, z). Conceptu-
ally, we may think of POMDP planning as a tree search
in the belief space, the space of all possible beliefs that
the agent may encounter. To find an optimal plan for a
POMDP, we traverse the belief tree from the bottom up
and compute an optimal action recursively at each node
using the Bellman’s equation:

V ∗(b) = max
a∈A

{∑
s∈S

b(s)R(s, a)

+ γ
∑
z∈Z

p(z|b, a)V ∗
(
τ(b, a, z)

)}
. (3)

POMDP planning is a special case of belief space
planning. Belief planning is more general and does not
require the planning model to satisfy the mathematical
structure of POMDPs. For example, the reward func-
tionR may depend on the belief and not just on the state
and the action.

2.2 Importance Sampling

Suppose that we want to calculate the expectation

µ = Ep
(
f(s)

)
=

∫ 1

0
f(s)p(s) ds

for a random variable s distributed according to p, but
the function f(s) is not efficiently integrable. One idea
is to estimate µ with a set of samples si, i = 1, 2, . . . , n:

µ̂ =
1

n

n∑
i=1

f(si), si ∼ p

The estimator µ̂ is unbiased, with variance Var(µ̂) =
σ2/n, where σ2 =

∫ 1
0 (f(s)− µ)2p(s) ds.

Importance sampling reduces the variance of the esti-
mator by carefully choosing an importance distribution
q for sampling instead of using p directly:

µ̂UIS =
1

n

n∑
i=1

f(si)p(si)

q(si)
=

1

n

n∑
i=1

f(si)w(si), si ∼ q,

(4)
where w(si) = p(si)/q(si) is defined as the impor-
tance weight of the sample si and q(s) 6= 0 when-
ever f(s)p(s) 6= 0. The estimator µ̂UIS is also unbi-
ased, with variance Var(µ̂UIS) = σ2

UIS/n, where σ2
UIS =
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∫ 1
0 (f(s)p(s)

q(s) − µ)2q(s) ds. Clearly the estimator’s vari-
ance depends on the choice of q. The optimal impor-
tance distribution

q∗(s) =
|f(s)| p(s)
Ep
(
|f(s)|

)
gives the lowest variance (Owen, 2013).

When either p or q is unnormalized, an alternative es-
timator normalizes the importance weights:

µ̂NIS =

∑n
i=1 f(si)w(si)∑n

i=1w(si)
, si ∼ q, (5)

which requires q(s) 6= 0 whenever p(s) 6= 0. This es-
timator is biased, but is asymptotically unbiased as the
number of samples increases (Owen, 2013). The perfor-
mance of µ̂NIS versus that of µ̂UIS is problem-dependent.
While µ̂NIS is biased, it often has lower variance than µ̂UIS

in practice, and the decrease in variance often outweighs
the increase in bias, leading to reduced estimation error
overall (Koller and Friedman, 2009).

2.3 Related Work

Uncertainties may arise from imperfect robot control,
noisy sensors, unknown or changing environments, etc. .
They pose major challenges for robot planning. To plan
effectively under uncertainty, a robot must gather infor-
mation that reduces uncertainty and exploit the informa-
tion to achieve specified task objectives. Occasionally
it is possible to compute optimal or near-optimal plans
without explicitly representing uncertainties, e.g., the
bug algorithms (Lumelsky and Stepanov, 1987). More
often, explicit representation of uncertainties enables
much more effective planning. Early work represents
uncertainties as sets of possibilities (e.g., (Goldberg,
1993; Lozano-Pérez et al., 1984)). Recent work favors
more powerful probabilistic models, such as stochastic
optimal control (Bertsekas, 2005) or POMDPs, which
capture uncertainties in probability distributions. Both
stochastic optimal control and the POMDP plan in
the belief space, the space of probability distributions.
While the two were born in different research commu-
nities, they are closely related. As uncertainty mod-
els, they differ mainly in the continuity assumption.
Stochastic optimal control assumes continuous states,
actions, and observations. The POMDP often, though
not exclusively, assumes discrete states, actions, and ob-
servations. For the discussion here, we refer to both as
belief-space planning and do not differentiate between
them.

A special case of belief-space planning is linear-
quadratic Gaussian (LQG) control, which assumes a

linear system, a quadratic cost function, and Gaussian
noise. LQG control admits a closed-form optimal solu-
tion (Bertsekas, 2005). However, belief-space planning
is much more challenging in its general form. Some
methods aim for locally optimal solutions (e.g., (van den
Berg et al., 2011, 2012; Hauser, 2011)). POMDP plan-
ning usually aims for globally optimal solutions.

There are two general approaches to POMDP plan-
ning: offline and online. The offline approach computes
beforehand a policy contingent on all possible future
events. Once computed, the policy can be executed on-
line very efficiently. While offline POMDP algorithms
have made dramatic progress in the last decade (Kurni-
awati et al., 2008; Pineau et al., 2003; Smith and Sim-
mons, 2004; Spaan and Vlassis, 2005), they are inher-
ently limited in scalability, because the number of possi-
ble future events grows exponentially with the planning
horizon. In contrast, the online approach (Ross et al.,
2008) interleaves planning and plan execution. It avoids
computing a policy for all future events beforehand. At
each time step, it searches for a single best action for
the current belief only, executes the action, and updates
the belief. The process then repeats at the new belief.
The online approach is much more scalable than the
offline approach, but its performance is limited by the
amount of online planning time available at each time
step. The online and offline approaches are complemen-
tary and can be combined in various ways to further im-
prove planning performance (Gelly and Silver, 2007; He
et al., 2011)

Our work focuses on online planning. POMCP (Sil-
ver and Veness, 2010) and DESPOT (Somani et al.,
2013) are among the fastest online POMDP algorithms
available today. DESPOT has found applications in
many different robotic tasks, including autonomous
driving in a crowd (Bai et al., 2015), robot de-mining
in Humanitarian Robotics and Automation Technology
Challenge 2015 (Madhavan et al., 2015), and push ma-
nipulation (Koval et al., 2016a). One key idea under-
lying both POMCP and DESPOT is the use of Monte
Carlo simulation to sample future events and evaluate
the quality of candidate policies. A similar idea has
been used in offline POMDP planning (Bai et al., 2010).
It is, however, well known that standard Monte Carlo
sampling may miss rare, but critical events, resulting in
sub-optimal policies. Importance sampling is one way
to alleviate this difficulty and improve planning perfor-
mance.

Importance sampling is a well-established proba-
bilistic sampling technique and has applications in
many fields, e.g., Monte Carlo integration (Kalos and
Whitlock, 1986), ray tracing for computer graphic
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rendering (Veach, 1997), and option pricing in fi-
nance (Glasserman, 2003). In the more closedly related
field of reinforcement learning, importance sampling
has been used to estimate the value of a policy in a par-
tially observable setting (Shelton, 2001). The focus of
the work there is to derive the best estimator given an im-
portance distribution. Within robotics, many methods
for sampling-based motion planning make use of im-
portance sampling (van den Berg and Overmars, 2005;
Boor et al., 1999; Kurniawati and Hsu, 2004; Wilmarth
et al., 1999). This work introduces importance sampling
to robot planning under uncertainty and develops tools
for obtaining good importance sampling distributions.

3 IS-DESPOT

3.1 Overview

Online POMDP planning interleaves planning and ac-
tion execution. At each time step, the robot computes a
near-optimal action a∗ at the current belief b by search-
ing a belief tree with the root node b (Figure 1a) and ap-
plies (3) at each tree node encountered during the search.
The robot executes the action a∗ and receives a new ob-
servation z. It updates the belief with a∗ and z, through
Bayesian filtering (1). The process then repeats.

A belief tree of height D contains O(|A|D|Z|D)
nodes. The exponential growth of the tree size poses
a major challenge for online planning when a POMDP
has large action space, large observation space, or long
planning horizon.

The DEterminized Sparse Partially Observable Tree
(DESPOT) is a sparse approximation of the belief tree,
under K sampled scenarios (Figure 1b). The belief as-
sociated with each node of a DESPOT is approximated
as a set of sampled states. A DESPOT contains all the
action branches of a belief tree, but only the sampled ob-
servation branches. It has size O(|A|DK), while a cor-
responding full belief tree has size O(|A|D|Z|D). In-
terestingly, K is often much smaller than |Z|D for a
DESPOT to approximate a belief tree well, under suit-
able conditions. Now, to find a near-optimal action, the
robot searches a DESPOT instead of a full belief tree,
leading to much faster online planning.

Clearly the sampled scenarios have major effect on
the optimality of the chosen action. The original
DESPOT algorithm samples scenarios with their natu-
ral probability of occurrence according to the POMDP
model. It may miss those scenarios that incur large re-
ward or penalty, but happen with low probability. To
address this issue, IS-DESPOT samples from an impor-
tance distribution and reweights the samples, using (4)

or (5). We show in this section that IS-DESPOT re-
tains the theoretical guarantee of DESPOT for all rea-
sonable choices of the importance distribution. We also
demonstrate empirically that IS-DESPOT significantly
improves the planning performance for good choices
of the importance distribution (see Section 5 and Sec-
tion 6).

3.2 DESPOT with Importance Sampling

We define the DESPOT constructively by applying a de-
terministic simulative model to all possible action se-
quences under K sampled scenarios. Formally, a sce-
nario φb = (s0, ϕ1, ϕ2, . . .) for a belief b consists of
a state s0 sampled according to b and a sequence of
random numbers ϕ1, ϕ2, . . . sampled independently and
uniformly over the range [0, 1]. The deterministic simu-
lative model is a function G : S×A×R 7→ S×Z, such
that if a random number ϕ is distributed uniformly over
[0, 1], then (s′, z′) = G(s, a, ϕ) is distributed according
to

p(s′, z′|s, a) = p(s′|s, a)p(z′|s′, a)

= T (s, a, s′)O(s′, a, z′).

Intuitively, G performs one-step simulation of the
POMDP model. It is deterministic simulation of a prob-
abilistic model, because the outcome is fixed by the in-
put random numberϕ. To simulate a sequence of actions
(a1, a2, . . .) under a scenario φb = (s0, ϕ1, ϕ2, . . .),
we start at s0 and apply the deterministic simulative
model G at each time step. The resulting simulation
sequence ζ = (s0, a1, s1, z1, a2, s2, z2, . . .) traverses a
path (a1, z1, a2, z2, . . .) in the belief tree, starting at its
root (Figure 1b). The nodes and edges along this path
are added to the DESPOT. Further, each belief node
contains a set of sampled states, commonly called a
particle set, which approximates the corresponding be-
lief. If ζ passes through the node b at time step t, the
state st is added to the particle set for b. Repeating
this process for all possible action sequences under all
K sampled scenarios completes the construction of the
DESPOT. Clearly, the size of a DESPOT with height D
is O(|A|DK).

A DESPOT policy π can be represented as a policy
tree derived from a DESPOT T . The policy tree contains
the same root as T , but it contains at each internal node
b only one action branch determined by a = π(b). We
define the size of such a policy, |π|, as the number of
internal policy tree nodes. A singleton policy tree thus
has size 0.

Given an initial belief b, the value of a policy π can
be approximated by integrating over Z , the space of all
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Figure 1: Online POMDP planning performs lookahead search on a tree. (a) A standard belief tree of height D = 2.
Each belief tree node represents a belief. At each node, the tree branches on every action and observation. (b) A
DESPOT (black), obtained under 2 sampled scenarios marked by blue and orange dots, is overlaid on the standard
belief tree (gray). A DESPOT contains all actions branches, but only sampled observation branches.

possible D-step simulation sequences under π:

Vπ(b) ≈
∫
ζ∈Z

Vζ p(ζ|b, π) dζ,

where p(ζ|b, π) = b(s0)
∏

D−1

t=0 p(st+1, zt+1|st, at+1) is
the probability of ζ and Vζ =

∑
D−1

t=0 γ
tR(st, at+1) is

the total discounted reward of ζ. To estimate Vπ(b) us-
ing unnormalized importance sampling (4), IS-DESPOT
samples a subset Z ′ ⊂ Z according to a given impor-
tance distribution

q(ζ|b, π) = q(s0)
D−1∏
t=0

q(st+1, zt+1|st, at+1), (6)

where q(s0) is the distribution for sampling the initial
state and q(st+1, zt+1|st, at+1) is the distribution for
sampling the state transitions and observations. Then,

V̂π(b) =
1

|Z ′|
∑
ζ∈Z′

w(ζ)Vζ

=
1

|Z ′|
∑
ζ∈Z′

D−1∑
t=0

w(ζ0:t)γ
tR(st, at+1), (7)

where w(ζ) = p(ζ|b, π)/q(ζ|b, π) is the importance
weight of ζ, ζ0:t is a subsequence of ζ over the time
steps 0, 1, . . . , t, and w(ζ0:t) is the importance weight
of ζ0:t.

Now it appears that we just need to find a policy π that
maximizes V̂π(b). Observe, however, that V̂π(b) is cal-
culated with respect to a set of sampled scenarios while
our goal is to find a policy optimal under all scenarios
and not just the sampled ones. To avoid over-fitting to
the sampled scenarios, IS-DESPOT optimizes a regular-
ized objective function:

max
π∈ΠT

{
V̂π(b)− λ|π|

}
, (8)

where ΠT is the set of all policy trees derived from a
DESPOT T and λ ≥ 0 is a regularization constant.
More details on the benefits of regularization are avail-
able in (Ye et al., 2017).

3.3 Online Planning

IS-DESPOT is an online POMDP planning algorithm.
At each time step, IS-DESPOT searches a DESPOT T
rooted at the current belief b0. It obtains a policy π that
optimizes (8) at b0 and chooses the action a = π(b0) for
execution.

To optimize (8), we substitute (7) into (8) and define
the regularized weighted discounted utility (RWDU) of
a policy π at each DESPOT node b:

νπ(b) =
1

|Z ′|

∑
ζ∈Z′b

D−1∑
t=∆(b)

w(ζ0:t)γ
tR(st, at+1)− λ|πb|,

(9)
where Z ′b ⊂ Z ′ contains all simulation sequences
traversing paths in T through the node b; ∆(b) is the
depth of b in T ; πb is the subtree of π with the root
b. Given a policy π, there is one-to-one correspon-
dence between scenarios and simulation sequences. So,
|Z ′| = K. We optimize νπ(b0) over ΠT by performing
a tree search on T . At each node b, we may follow a de-
fault policy π0 or explore one of the action branches by
applying Bellman’s equation recursively, similar to (3):

ν∗(b) = max

{
γ∆(b)

K

∑
ζ∈Z′b

w(ζ0:∆(b))Vπ0,sζ,∆(b)
,

max
a∈A

{
ρ(b, a) +

∑
z∈Zb,a

ν∗(τ(b, a, z))
}}

,

(10)

where

ρ(b, a) =
1

K

∑
ζ∈Z′b

γ∆(b)w(ζ0:∆(b))R(sζ,∆(b), a)− λ.

In (10), π0 denotes a given default policy; sζ,∆(b) denotes
the state in ζ at time step ∆(b); Vπ0,s is the value of π0

starting from state s. The outer maximization in (10)

5



chooses between following π0 or exploring the action
branches, while the inner maximization chooses the spe-
cific action branch. The maximizer at b0, the root of T ,
gives the optimal action.

There are many tree search algorithms. One is to tra-
verse T from the bottom up. At each leaf node b of
T , the algorithm sets ν∗(b) as the value of the default
policy π0 and then applies (10) at each internal node un-
til reaching the root of T . The bottom-up traversal is
conceptually simple, but T must be constructed fully in
advance. For very large POMDPs, the required number
of scenarios, K, may be huge, and constructing the full
DESPOT is not practical.

To scale up, an alternative is to perform anytime
heuristic search. To guide the heuristic search, the al-
gorithm maintains at each node b of T a lower bound
and an upper bound on ν∗(b). It constructs and searches
T incrementally, using K sampled scenarios. Initially,
T contains only a single root node with belief b0. The
algorithm makes a series of explorations to expand T
and reduces the gap between the upper and lower bounds
at the root node b0 of T . Each exploration follows the
heuristic and traverses a promising path from b0 to ex-
pand T by adding new nodes at the end of the path.
The algorithm then traces the path back to b0 and ap-
plies (10) to both the lower and upper bounds at each
node along the way. The explorations continue, until
the gap between the upper and lower bounds reaches a
target level or the allocated online planning time runs
out. To achieve the best performance, there are various
techniques for performing the tree search efficiently and
constructing good upper and lower bounds. We refer the
reader to (Ye et al., 2017) for details.

In summary, the core idea of IS-DESPOT is to sam-
ple a set of scenarios according to the importance distri-
bution, construct a DESPOT incrementally, and search
the tree to find an optimal action under the reweighted
scenarios. It is conceptually simple and is easy to imple-
ment.

3.4 Analysis

We now show that IS-DESPOT retains the strong theo-
retical guarantee of DESPOT. The two theorems below
generalize the earlier results (Somani et al., 2013) to the
case of importance sampling. To simplify the presen-
tation, this analysis assumes, without loss of generality,
R(s, a) ∈ [0, Rmax] for all states and actions. All proofs
are available in the appendix.

Theorem 1 shows that with high probability, impor-
tance sampling produces an accurate estimate on the
value of a policy.

Theorem 1. Let b0 be a given belief. Let ΠT be the
set of all policy trees derived from a DESPOT T and
Πb0,D,K =

⋃
T ΠT be the union over all DESPOTs

with root node b0, with height D, and constructed with
all possible K importance-sampled scenarios. For any
τ, α ∈ (0, 1), every policy π ∈ Πb0,D,K satisfies

Vπ(b0) ≥
1− α
1 + α

V̂π(b0)−
RmaxWmax

(1 + α)(1− γ)

× ln(4/τ) + |π| ln(KD|A||Z|)
αK

(11)

with probability at least 1− τ , where

Wmax =

{
max
s,s′∈S
a∈A,z∈Z

p(s, z|s′, a)
q(s, z|s′, a)

}D
(12)

is the maximum importance weight.

The estimation error bound in (11) holds for all policies
in Πb0,D,K simultaneously. It also holds for any con-
stant α ∈ (0, 1), which is a parameter that can be tuned
to tighten the bound. The additive error on the RHS of
(11) depends on the size of policy π. It also grows loga-
rithmically with |A| and |Z|, indicating that IS-DESPOT
scales up well for POMDP with very large action and
observation spaces.

Theorem 2 shows that we can find a near-optimal pol-
icy π̂ by maximizing the RHS of (11).

Theorem 2. Let π∗ be an optimal policy at a be-
lief b0. Let ΠT be the set of policies derived from
a DESPOT T that has height D and is constructed
with K importance-sampled scenarios for b0. For any
τ, α ∈ (0, 1), if

π̂ = arg max
π∈ΠT

{
1− α
1 + α

V̂π(b0)−
RmaxWmax

(1 + α)(1− γ)
·
|π| ln(KD|A||Z|)

αK

}
,

then with probability at least 1− τ ,

Vπ̂(b0) ≥
1− α
1 + α

Vπ∗(b0)−
RmaxWmax

(1 + α)(1− γ)

×

(
ln(8/τ) + |π∗| ln(KD|A||Z|)

αK

+ (1− α)
(√

2 ln(2/τ)

K
+ γD

))
.

(13)

The estimation errors in both theorems depend on the
choice of the importance distribution. By setting the im-
portance sampling distribution to the natural probability
of occurrence, we recover exactly the same results for
the original DESPOT algorithm.
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3.5 Normalized Importance Sampling

We applied normalized importance sampling to our al-
gorithm as well. The algorithm remains basically the
same, other than normalizing the importance weights.
The analysis is also similar, but is more involved. Al-
though the variance of a normalized importance sam-
pling estimator and an unnormalized importance sam-
pling estimator is incomparable in theory, the normal-
ized estimator, in practice, often has a lower variance
than that of the unnormalized estimator (Koller and
Friedman, 2009). The decrease in the variance often
leads to better estimation of the policy value, despite the
increase in bias, and helps to produce a better policy.
Our experiments show that IS-DESPOT with normal-
ized importance weights produces better performance in
some cases (see Section 5).

4 Importance Distributions

The importance distribution is a key element of im-
portance sampling and, in particular, IS-DESPOT. We
now derive the optimal importance distribution for IS-
DESPOT. It provides insight for manually constructing
importance distributions. It also forms the basis for
a general method that learns importance distributions
from data. To focus on the main idea, we restrict the
discussion here to the importance distribution for sam-
pling state transitions.

4.1 Optimal Importance Distributions

The value of a policy π at a belief b, Vπ(b), is the ex-
pected total discounted reward of executing π, starting
at a state s distributed according to b. It can be obtained
by integrating over all possible starting states:

Vπ(b) =

∫
s∈S

E(v|s, π)b(s) ds,

where v is a random variable representing the to-
tal discounted reward of executing π starting from s
and E(v|s, π) is its expectation. Compared with stan-
dard importance sampling (Section 2.2), one crucial
difference here is that IS-DESPOT estimates f(s) =
E(v|s, π) by Monte Carlo simulation of π rather than
evaluates f(s) deterministically. Thus the importance
distribution must take into consideration not only the
mean E(v|s, π) but also the variance Var(v|s, π) result-
ing from Monte Carlo simulation; it gives a state s in-
creased importance when either is large. The theorem
below formalizes this idea.

Theorem 3. Given a policy π, let v be a random vari-
able representing the total discounted reward of execut-
ing π, starting from state s, and let Vπ(b) be the value,
i.e., the expected total discounted reward, of π at a be-
lief b. To estimate Vπ(b) using unnormalized impor-
tance sampling, the optimal importance distribution is
q∗π(s) = b(s)/wπ(s), where

wπ(s) =

Eb
(√

[E(v|s, π)]2 + Var(v|s, π)

)
√

[E(v|s, π)]2 + Var(v|s, π)
. (14)

Theorem 3 specifies the optimal importance distribu-
tion for a given policy π, but IS-DESPOT searches for
an optimal poicy and during the search, evaluates many
policies in the set ΠT , for some DESPOT T . Our next
result suggests that we can use the optimal importance
distribution for a policy π to estimate the value of an-
other “similar” policy π′. This allows us to use a single
importance distribution for IS-DESPOT.

Theorem 4. Let V̂π,q(b) be the estimated value of a pol-
icy π at a belief b, obtained by K independent sam-
ples with importance distribution q. Let v be a ran-
dom variable representing the total discounted reward
of executing a policy, starting from some initial state. If
two policies π and π′ satisfy [E(v|s,π′)]2

[E(v|s,π)]2
≤ 1 + ε and

Var(v|s,π′)
Var(v|s,π) ≤ 1 + ε for all s ∈ S and some ε > 0, then

Var
(
V̂π′,q∗π(b)

)
≤ (1+ε)

(
Var
(
V̂π,q∗π(b)

)
+

1

K
V ∗(b)2

)
,

(15)
where q∗π is an optimal importance distribution for esti-
mating the value of π and V ∗(b) is the value of an opti-
mal policy at b.

Theorem 4 quantifies the benefits of using an optimal
importance distribution q∗π for π to evaluate another sim-
ilar policy π′. When ε is small, i.e., the two policies π
and π′ are close, the variance of estimating the value of
π′ under q∗π, Var(V̂π′,q∗π(b)), can be bounded in terms of
Var(V̂π,q∗π(b)). Futher the variance becomes smaller as
the number of samples, K, grows.

For a given DESPOT T , the policies in the set ΠT
are close to one another, because the branch-and-bound
heuristic search helps to narrow down quickly the search
space to a few near-optimal policies. Theorem 4 thus
provides the basis for designing an importance distri-
bution for a particular policy in ΠT and applying it to
online DESPOT policy search.

4.2 Learning Importance Distributions

The common approach in the literature is to construct
importance distributions manually. This is domain-
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specific and not always easy. Alternatively, we may
learn importance distributions automatically from data.
Our main idea is to perform a sufficiently large num-
ber of simulations offline to gather information on a do-
main. We then use the simulation data to learn an ef-
fective importance distribution for online planning using
IS-DESPOT.

Theorems 3 and 4 provide the direction for the learn-
ing approach. They suggest that a good importance dis-
tribution for IS-DESPOT can be obtained, if the mean
E(v|s, π) and the variance Var(v|s, π) are known for all
s ∈ S under a suitable policy π ∈ ΠT . Two issues
arise here. First, we need to identify π. Second, we
need to represent E(v|s, π) and Var(v|s, π) compactly,
as the state space S may be very large or even continu-
ous. For the first issue, we use the policy generated by
the DESPOT algorithm, without importance sampling,
to compute a policy. Theorem 4 helps to justify this
choice. For the second issue, we use a discrete feature
mapping over S. Specifically, we learn the function

ξ(s) =

√
[E(v|s, π)]2 + Var(v|s, π), (16)

which is inversely proportional to the importance weight
wπ(s). We then set the importance distribution to
q(s) = ηp(s) ξ(s), where η is a normalization constant.

To learn ξ(s), we first generate data by running
DESPOT many times offline in simulation without im-
portance sampling. Each run starts at a state s0 sam-
pled from the initial belief b0 and generates a sequence
{s0, a1, r1, s1, a2, r2, s2, . . . , aD, rD, sD}, where at is
the action that DESPOT chooses, st is a state
sampled according to the state-transition probability
p(st|st−1, at) = T (st−1, at, st), and rt = R(st−1, at)
is the reward at time t for t = 1, 2, . . . . Let vt =∑D

i=t γ
(i−t)ri be the total discounted reward from time t

onwards. We collect all pairs (st−1, vt) for t = 1, 2, . . .
from each run. Next, we manually construct a set of
features over the state space S so that each state s ∈ S
maps to a feature vector F(s). Finally, We discretize the
feature space into a finite set of bins of equal size and in-
sert each collected data pair (s, v) into the bin contain-
ing F(s). We calculate the mean E(v) and the variance
Var(v) for each bin. For any state s ∈ S, ξ(s) is then
approximated from the mean and the variance of the bin
containing F(s).

We have two primary considerations in feature selec-
tion: the expected total discounted reward and its vari-
ance. For example, in navigation tasks, the distance be-
tween the agent and the goal is a useful feature, because
the agent gets higher discounted reward as it approaches
the goal. The distance between the agent and the nearest
obstacle is another useful feature. If we assume imper-

fect robot control, this distance affects the probability
of the robot hitting obstacles and in turn, the variance on
the robot’s expected total reward. See Section 5 for more
examples. The number of features required is problem-
dependent. In our experiences, two to five features are
usually enough.

This learning method is simple. It scales up to high-
dimensional and continuous state spaces, provided that
a small feature set can be constructed. It introduces ap-
proximation error, as a result of discretization. However,
the importance distribution is a heuristic that guides
Monte Carlo sampling, and IS-DESPOT is overall ro-
bust against approximation error in the importance dis-
tribution. The experimental results in the next section
show that importance distributions captured by a small
feature set effectively improve online planning for large
POMDPs.

5 Experiments in Simulation

We evaluated IS-DESPOT in simulation on a suite of
five tasks (Table 1). The first three tasks are known to
contain rare but critical states, states which are not en-
countered frequently, but may lead to significant conse-
quences. The other two, RockSample (Smith and Sim-
mons, 2004) and Pocman (Silver and Veness, 2010), are
established benchmark tests for evaluating the scalabil-
ity of POMDP algorithms.

We compared two versions of IS-DESPOT, un-
normalized and normalized, with both DESPOT and
POMCP. See Table 1 for the results. For all algo-
rithms, we set the maximum online planning time to
one second per step. For POMCP, we slightly mod-
ified the software provided by the authors to make it
strictly follow 1-second time limit for planning. For
DESPOT and IS-DESPOT, we set the number of sam-
pled scenarios to 500 and used an uninformative up-
per bound and fixed-action lower bound policy without
domain-specific knowledge (Ye et al., 2017) in Asym-
metricTiger, CollisionAvoidance, and Demining. Fol-
lowing earlier work (Ye et al., 2017), we set the num-
ber of sampled scenarios to 500 and 100, respectively,
in RockSample and Pocman, and used domain-specific
heuristics. For fair comparison, we tuned the explo-
ration constant of POMCP to the best possible and used
a rollout policy with the same domain knowledge as that
for DESPOT and IS-DESPOT in each task. To learn
the importance sampling distribution for IS-DESPOT,
we applied the approach described in Section 4.2 and
ran 50,000 simulations offline to collect data for each
task.
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Table 1: Performance comparison. The table shows the average total discounted reward (with 95% confidence in-
terval) of four algorithms on five tasks. UIS-DESPOT and NIS-DESPOT refer to unnormalized and normalized
IS-DESPOT, respectively.

AsymmetricTiger CollisionAvoidance Demining RockSample(15,15) Pocman

|S| 2 9,720 ∼ 1049 7,372,800 ∼ 1056

|A| 3 3 9 20 4
|Z| 2 18 16 3 1,024
POMCP −5.60± 1.51 −4.19± 0.07 −17.11± 2.74 15.32± 0.28 294.16± 4.06
DESPOT −2.20± 1.78 −1.05± 0.27 −11.09± 2.45 18.37± 0.28 317.90± 4.17
UIS-DESPOT 3.70± 0.49 −0.87± 0.19 − 3.45± 1.76 18.30± 0.32 315.13± 4.92
NIS-DESPOT 3.75± 0.47 −0.44± 0.12 − 3.69± 1.80 18.68± 0.28 326.92± 3.89

Table 2: Importance distribution q for AsymmetricTiger.
DESPOT samples according to p. IS-DESPOT samples
according to q.

state E(v|s) Var(v|s) p(s) q(s)
sL 4.36 7.34 0.99 0.40
sR −65.84 566978.9 0.01 0.60

Overall, Table 1 shows that both unnormalized
and normalized IS-DESPOT substantially outperform
DESPOT and POMCP in most tasks, including, in par-
ticular, the two large-scale tasks, Demining and Poc-
man. Normalized IS-DESPOT performs better than un-
normalized IS-DESPOT in some tasks, though not all.

AsymmetricTiger Tiger is a classic POMDP prob-
lem (Kaelbling et al., 1998). A tiger hides behind one
of two doors, denoted by states sL and sR, with equal
probabilities. An agent must decide which door to open,
receiving a reward of +10 for opening the door without
the tiger and receiving −100 otherwise. At each step,
the agent may choose to open a door or to listen. Lis-
tening incurs a cost of −1 and provides the correct in-
formation with probability 0.85. The task resets once
the door is opened. The only uncertainty here is the
tiger’s location. Tiger is a toy problem, but it captures
the key trade-off between information gathering and in-
formation exploitation prevalent in robot planning under
uncertainty. We use it to gain understanding on some
important properties of IS-DESPOT.

We first modify the original Tiger POMDP. Instead
of hiding behind the two doors with equal probabilities,
the tiger hides behind the right door with much smaller
probability 0.01. However, if the agent opens the right
door with the tiger hiding there, the penalty increases
to −10, 000. Thus the state sR occurs rarely, but has
significant consequence. Sampling sR is crucial.

Since this simple task has only two states, we learn
the weight for each state and use them to construct the
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Figure 2: AsymmetricTiger. (a) Average total dis-
counted reward versus K, the number of sampled sce-
narios. (b) The rate of opening the right door with the
tiger behind versus K.

importance distribution for IS-DESPOT (Table 2).
Table 1 shows clearly that both versions of

IS-DESPOT significantly outperform DESPOT and
POMCP. This is not surprising. DESPOT and POMCP
sample the two states sL and sR according to their nat-
ural probabilities of occurrence and fail to account for
their significance, in this case, the high penalty of sR.
As a result, they rarely sample sR. In contrast, the im-
portance distribution enables IS-DSPOT to sample sR
much more frequently (Table 2). Unnormalized and nor-
malized IS-DESPOT are similar in performance, as nor-
malization has little effect on this small toy problem.

We conducted additional experiments to understand
how K, the number of sampled scenarios, affects per-
formance (Figure 2). To calibrate the performance, we
ran an offline POMDP algorithm SARSOP (Kurniawati
et al., 2008) to compute an optimal policy. When K is
small, the performance gap between DESPOT and IS-
DESPOT is significant. As K increases, the gap nar-
rows. When K is 32, both versions of IS-DESPOT are
near-optimal, while DESPOT does not reach a compara-
ble performance level even at K = 500. All these con-
firm the benefit of importance sampling for small sample
size.

One may ask how DESPOT and IS-DESPOT compare

9



0 100 200 300 400 500
K

9
8
7
6
5
4
3
2
1
0

av
er

ag
e 

to
ta

l d
is

co
un

te
d 

re
w

ar
d

DESPOT
UIS-DESPOT
NIS-DESPOT

0 100 200 300 400 500
K

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

co
llis

io
n 

ra
te

DESPOT
UIS-DESPOT
NIS-DESPOT

0 2 4 6 8 10 12 14 16 18
dy

0
5
10
15
20
25
30
35
40
45

ξ(
d
x
,d

y
)

dx =5

dx =6

dx =25

(a) (b) (c) (d)

Figure 3: CollisionAvoidance. (a) An aircraft changes the direction to avoid collisions. (b) Average total discounted
reward versus K, the number of sampled scenarios. (c) Collision rate versus K. (d) ξ(dx, dy) learned from data.

on the original Tiger task. The original Tiger has two
symmetric states. The optimal importance distribution
is flat. Thus DESPOT and IS-DESPOT have the same
sampling distribution, and IS-DESPOT has no perfor-
mance advantage over DESPOT. Importance sampling
is beneficial only if the planning task involves signifi-
cant events of low probability.

CollisionAvoidance This is inspired by the aircraft col-
lision avoidance task (Bai et al., 2012). The agent starts
moving from a random position in the right-most col-
umn of a 18 × 30 grid map (Figure 3a). An obstacle
randomly moves in the left-most column of this map.
It moves up with probability 0.25, moves down with
probability 0.25, and stays put with probability 0.50.
The probabilities become 0, 0.25, and 0.75 respectively
when the obstacle is at the top-most row, and become
0.25, 0, and 0.75 respectively when it is at the bottom-
most row. At each time step, the agent may choose to
move upper-left, lower-left or left, with a cost of −1,
−1, and 0 respectively. If the agent collides with the
obstacle, it receives a penalty of −1, 000. The task fin-
ishes when the agent reaches the left-most column. The
agent knows its own position exactly, but observes the
obstacle’s position with a Gaussian noise N (0, 1); the
observed position, affected by the Gaussian noise, is
rounded to the nearest grid cell. The probability of the
agent colliding with the obstacle is small, but the penalty
of collision is high.

To learn the importance distribution for IS-DESPOT,
we map a state s to a feature vector (dx, dy) and learn
ξ(dx, dy). The features dx and dy are the horizontal and
vertical distances between the agent and the obstacle,
respectively. The horizontal distance dx is the number
of steps remaining for the agent to move, and (dx, dy) =
(0, 0) represents a collision. These features capture the
changes in the mean and variance of policy values for
different states. When the agent is closer to the obstacle,
the probability of collision is higher, resulting in worse

mean and larger variance.
Figure 3d plots ξ(dx, dy) for a few chosen horizon-

tal distance dx. Overall, ξ(dx, dy) is higher when the
obstacle is closer to the agent. At dx = 5, ξ(dx, dy)
is close to zero for all dy >= 4, and ξ(dx, dy) = 0
when dy >= 10. This indicates that the DESPOT pol-
icy rarely causes collisions when the vertical distance
is larger than 4, because a collision would require the
agent and obstacle to move towards each other for sev-
eral steps in the remaining dx = 5 steps. This is unlikely
to happen, as the DESPOT policy actively tries to avoid
collisions. Furthermore, collision is not possible at all
when dy >= 10 because it requires at least 6 steps for
the agent and the obstacle to meet. With this learned
importance distribution, IS-DESPOT ignores states un-
likely to result in collisions and focuses on sampling the
rest. This significantly improves the planning perfor-
mance, as shown in Figures 3b and 3c. UIS-DESPOT
performs better than DESPOT with small K. NIS-
DESPOT improves the performance further. Both per-
form well with small K, while DESPOT cannot reach
the same level of performance even with substantially
larger K.

Demining This is adapted from the robotic de-mining
task in Humanitarian Robotics and Automation Tech-
nology Challenge (HRATC) 2015 (Madhavan et al.,
2015). It requires an agent to sweep a field, represented
as a 10 × 10 grid, to detect and report landmines. Each
grid cell contains a mine with probability 0.05. At each
time step, the agent may move one step along one of the
four orthogonal directions and then observe whether the
adjacent cells of the new location contain mines with
90% accuracy. The agent receives a reward of +10 if
it reports a mine correctly and receives −10 otherwise.
If the agent steps over a mine, there is a high penalty
−1, 000 and the task terminates. DESPOT is a core
component of the system winning HRATC 2015. We
show that IS-DESPOT handles rare but critical states in
the task better than DESPOT, resulting in improved per-

10



100 150 200 250 300 350 400 450 500
K

70

60

50

40

30

20

10

0

av
er

ag
e 

to
ta

l d
is

co
un

te
d 

re
w

ar
d

DESPOT
UIS-DESPOT
NIS-DESPOT

100 150 200 250 300 350 400 450 500
K

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

m
in

e 
ex

pl
os

io
n 

ra
te

DESPOT
UIS-DESPOT
NIS-DESPOT

(a) (b) (c)

Figure 4: Demining. (a) A robot moves in a 10 × 10 grid map to detect and report landmines. (b) Average total
discounted reward versus K, the number of sampled scenarios. (c) The rate of hitting mines versus K.

Figure 5: RockSample. A robot senses rocks to identify
“good” ones and samples them. Upon completion, it
exits the east boundary.

formance overall.
To learn the importance distribution for IS-DESPOT,

we map a state s to a feature vector (n, d), where n is
the number of unreported mines and d is the Manhattan
distance between the agent and the nearest mine. These
two features capture the changes in the mean and the
variance of policy values for different states, because n
determines the maximum total discounted reward that
the agent can get, and d affects the probability of step-
ping over mines.

Figure 4b shows the performance comparison be-
tween IS-DESPOT and DESPOT for increasing num-
ber of scenarios. IS-DESPOT converges faster than
DESPOT and significantly outperforms DESPOT even
for relatively large number of scenarios (K = 500).
Figure 4c confirms that the performance improvement
results from the decreased number of mine explosions.
For this task, the size of the state space is about 1049, and
IS-DESPOT clearly outperforms DESPOT and POMCP
(Table 1), affirming the scalability of IS-DESPOT.

RockSample RockSample is a standard POMDP
benchmark problem (Smith and Simmons, 2004). In
the problem RockSample(n, k), the agent moves on an
n×n grid map which has k rocks. Each of the rocks can
either be good or bad. The agent knows each rock’s po-
sition but does not know its state (good or bad). At each
time step, the agent may move to an adjacent grid cell
deterministically, make a long-range noisy observation
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Figure 6: Pocman. (a) The Pacman/Pocman game. (b)
Comparison of the natural state-transition distribution
T , the manually constructed importance distribution qM,
and the learned importance distribution qL.

on the state of any rock, or sample a rock if there is one
at the agent’s current location. The observation accuracy
decreases exponentially with respect to the distance be-
tween the agent and the rock. The agent receives a re-
ward of +10 if a sampled rock is good and receives−10
otherwise. A rock turns bad after being sampled. When
the agent exits from the east boundary of the map, it gets
a reward of +10, and the task terminates.

To learn the importance distribution, we map a state s
to a feature vector (n, d+, d−), where n is the number of
remaining good rocks, and d+ and d− are the Manhattan
distances to the nearest good rock and the nearest bad
rock respectively.

This task does not contain rare but critical states.
IS-DESPOT achieves comparable performance as
DESPOT (Table 1).

Pocman Pocman (Silver and Veness, 2010) is a par-
tially observable variant of the popular Pacman game
(Figure 6a). An agent and four ghosts move in a 17×19
maze populated with food pallets. The agent can move
from a cell in the maze to an adjacent one if there is no
wall in between. Each move incurs a cost of −1. A
cell contains the food pallet with probability 0.5. Eating
a food pallet gives the agent a reward of +10. Getting
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caught by ghosts incurs a penalty of −100. There are
four power pills. After eating a power pill, the agents
retains it for the next 15 steps and acquires the power
to kill ghosts. Killing a ghost gives a reward of +25.
Let d be the Manhattan distance between the agent and
a ghost. When d ≤ 5, the ghost chases the agent with
probability 0.75 if the agent does not possess the power
pill; the ghost runs away, but slips with probability 0.25
if the agent possesses the power pill. When d > 5, the
ghost moves uniformly at random to feasible adjacent
cells. Unlike that in the original Pacman game, the Poc-
man agent does not know the exact locations of ghosts,
but sees approaching ghosts when they are in a direct
line of sight and hears them when d ≤ 2.

To learn the importance distribution, we map a state s
to a feature vector (n, dmin),where dmin is the Manhat-
tan distance to the nearest ghost and n is the number of
remaining steps for which the agent retains a power pill.

Table 1 shows that unnormalized IS-DESPOT does
not provide improvement over DESPOT. However, nor-
malized IS-DESPOT does, because normalization of im-
portance weight reduces the high variance in this com-
plex task.

To understand the benefits of learning the importance
distribution, we tried to construct an importance distri-
bution qM manually. The states, in which a ghost catches
the agent, are critical. They do not occur very often,
but incur high penalty. An effective importance distri-
bution must sample such states with increased proba-
bility. One crucial aspect of the ghost behavior is the
decision of chasing the agent, governed by the distribu-
tion p(CHASE | d). To obtain qM, we shift p(CHASE | d)
upward by a constant amount, reasoning that having the
ghost chase the agent more often increases the sampling
of critical states in which a ghost catches an agent. This
manually constructed importance distribution qM, when
used in normalized IS-DESPOT, achieved an average to-
tal discounted reward of 317.02±4.21, which is weaker
than that of the learned importance distribution qL. To
understand why, let us compare qM with qL (Figure 6b).
Although qL does have the ghost chase the agent more
often as qM does, it does not increase p(CHASE|d) uni-
formly. The increase depends on the distance d. This
suggests that even when our intuition is correct, getting
the details of the importance distribution right is not al-
ways straightforward. Learning the importance distri-
bution from data provides substantial benefits in such
cases.

Figure 7: Our single-seater autonomous vehicle,
Scooter, driving amidst pedestrians.

6 Experiments with an Autonomous
Vehicle

We further evaluated IS-DESPOT on a single-seater au-
tonomous vehicle.

6.1 System Overview

Autonomous driving has been gaining popularity in re-
cent years. Our single-seater autonomous vehicle, called
Scooter, is designed to drive in densely populated urban
areas, such as town plazas, shopping malls, and hospital
complexes (Figure 7). It drives at moderate speed, but in
close proximity to pedestrians. A primary challenge for
Scooter is to handle the complex, dynamic environment
with many walking pedestrians and sudden changes of
pedestrian behaviors, in order to drive safely, efficiently
and smoothly.

Figure 8 gives an overview of the vehicle hardware
platform. The sensor package consists of two LI-
DARs, an inertia measurement unit (IMU), and wheel
encoders. The top-mounted SICK LMS151 LIDAR and
the bottom-mounted SICK TiM551 LIDAR, both scan at
50 Hz over 270 degrees, with maximum range of 50 me-
ters and 10 meters, respectively. They are used for local-
ization and pedestrian detection. The onboard computer
is fitted with an Intel Core i7-4770R processor running
at 3.90 GHz and 16 GB RAM. Scooter drives at maxi-
mum 8 km/h, roughly the speed of fast human walking.

Our autonomous driving system replans online at
each time step in near real time. We adopt a two-level hi-
erarchical approach developed earlier (Bai et al., 2015).
At the high level, we use the hybrid A* algorithm (Stan-
ley, 2006) to search for a path. At the low level, we use
a POMDP algorithm to control the vehicle speed along
the planned path. To drive reliably near pedestrians, one
key issue is to infer pedestrian intentions, which dictate
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Figure 8: The vehicle platform.

their walking behaviors. Our intention POMDP model
hedges against the uncertainty in pedestrian intention es-
timates and reasons about the long-term effects of the
immediate vehicle control.

The autonomous driving system is implemented on
top of the Robot Operating System (ROS). Scooter lo-
calizes itself in a given map through adaptive Monte-
Carlo localization (Thrun et al., 2005), which integrates
the LIDAR, the IMU, and the wheel encoder data.

6.2 Intention POMDP and Importance Sam-
pling

In our intention POMDP model, a state consists of two
components: the vehicle state and the pedestrian state.
The vehicle state contains its position, orientation, and
speed. The pedestrian state contains the position, speed
and goal location of each pedestrian. We model a pedes-
trian’s intention as his/her goal location and assume that
a pedestrian walks towards his/her goal directly along a
shortest path with Gaussian noise. The pedestrian goals
are hidden variables and must be inferred from observa-
tions over time. An observation consists of the position
and speed of the vehicle and the positions of all pedestri-
ans. The vehicle may choose from three discrete actions,
ACCELERATE, MAINTAIN, and DECELERATE, which mod-
ulate the vehicle speed. Both the ACCELERATE and DE-
CELERATE actions may fail with small probability. When
they fail, the vehicle maintains its current speed.

Our earlier work (Bai et al., 2015) used DESPOT to
solve the POMDP model. Collision or near-collision in-
cidents are clearly rare, but critical events. If DESPOT
fails to sample such events, the chosen actions may be
suboptimal and lead to emergency stop or collision; it
is reasonable to expect that IS-DESPOT provides im-
proved performance here.

To apply IS-DESPOT, we need to construct an ef-
fective importance distribution. We analyzed the near-

collision incidents in our experiments with DESPOT and
found three main causes. First, DESPOT fails to sample
events in which a pedestrian suddenly changes his/her
intention and walks towards an alternative goal. Sec-
ond, DESPOT fails to sample events in which DECEL-
ERATE fails for several steps in a row. Third, DESPOT
fails to sample events in which pedestrians walk directly
into the vehicle, when they are distracted by their mobile
phones or some sudden events. All three types of events
are rare, but critical. We manually constructed an impor-
tance distribution to boost the probability of sampling
these events. We did not apply the learning method, be-
cause of the difficulty in obtaining sufficient driving data
on the vehicle.

6.3 Results

We conducted extensive experiments to evaluate IS-
DESPOT’s online planning performance on a plaza in
the University Town of our campus. The area is roughly
70 m× 60 m in size, with many people passing by (Fig-
ure 7). In the experiments, we set the number of sampled
scenarios to 100. We used a simple reactive controller
as the default policy for the IS-DESPOT search. The
reactive controller chooses ACCELERATE, MAINTAIN, or
DECELERATE based on the distance D from the nearest
pedestrian to the vehicle. It compares D with two dis-
tance thresholds Dnear and Dfar. Then it chooses DE-
CELERATE if D ≤ Dnear, chooses MAINTAIN if Dnear <
D < Dfar, and chooses ACCELERATE if D ≥ Dfar. The
autonomous driving system performed online path plan-
ning at about 2 Hz and POMDP planning for speed con-
trol at 3 Hz. The maximum vehicle speed was set to
1.2 m/s. We used exactly the same settings for DESPOT
when comparing performance.

Overall, the autonomous driving system performed
well. Scooter did not have any collision or near-collision
incidents. It did not cause alarm to pedestrians nearby.
It also had few sudden acceleration changes, which may
cause passenger discomfort. The online video1 shows
some sample runs.

On the real robot, a comparison of DESPOT and IS-
DESPOT is much more difficult, as it is impossible
to repeat the exact same dynamic scene. To illustrate
their performance differences, we enacted a scene in
which a pedestrian suddenly changes his intention (Fig-
ure 9). The pedestrian has three possible intentions:
going to Cheers, going to the garage, or standing still.
Initially the pedestrian appears to walk towards Cheers,

1http://motion.comp.nus.edu.sg/2018/04/23/
online-pomdp-planning/
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Figure 9: An enacted scene on the University Town
plaza. Initially the pedestrian appears to walk towards
Cheers, but abruptly changes direction and moves to-
wards the garage after a few steps.

but abruptly changes direction and moves towards the
garage after a few steps.

Scooter starts with a uniform belief over the three
pedestrian intentions (Figure 10, frame 1). As the pedes-
trian walks towards Cheers for multiple steps, the belief
on the pedestrian going to Cheers increases significantly
(frame 2). The probability of going to the garage is very
low. So is the probability of staying put. DESPOT sam-
ples events according their natural probability of occur-
rence, i.e., the belief. Hence it obtains almost no sam-
ples for going to the garage. Without being aware of
this possibility, it then chooses to accelerate in order to
reach the goal faster and get higher reward. Suddenly,
the pedestrian changes his direction (frame 3), which
causes a quick increasing of the belief on the pedestrian
going to the garage. Noticing that increase, DESPOT
decides to decelerate in order to avert a possible colli-
sion. However, Scooter cannot slow down fast enough,
because of the high speed resulting from the ACCELER-
ATE action earlier. Therefore, emergency stop is trig-
gered (frame 4).

In almost the same scene, Scooter performs much bet-
ter under IS-DESPOT (Figure 10). At frame 2, the belief
on the pedestrian going to the garage is low. However,
the importance distribution boosts the probability of
sampling the event, because of the severe consequence
of collisions. IS-DESPOT hence obtains many more
such samples than DESPOT. As a result, IS-DESPOT
chooses to maintain the current speed rather than accel-
erate, which helps to avoid the near-collision incident
later. When the pedestrian changes his intention and
walks towards the garage, IS-DESPOT chooses two suc-
cessive DECELERATE actions (frames 3 and 4). There-
fore, Scooter slows down enough to let the pedestrian
pass through and then accelerates toward its goal (frame
5). Overall, Scooter reaches its goal successfully with-
out any incidents.

A comparison of the sample distributions for
DESPOT and for IS-DESPOT at frame 2 (Figure 10)

suggests that DESPOT fails to sample the event that the
pedestrian goes to the garage adequately. This is the
direct cause for its aggressive acceleration which even-
tually results in the near-collision incident.

To confirm and quantify the performance difference
between DESPOT and IS-DESPOT, we performed ad-
ditional simulation experiments in a similar setting. In
simulation, we can run the two algorithms many times
in exactly the same dynamic scenes. The vehicle drives
for 10 meters along a straight line in a 7 m × 17 m area
(Figure 11a). Six pedestrians are initialized with ran-
dom positions and goals. We compared the two algo-
rithms according to three measures: the average colli-
sion rate as a measures of safety, the average travel time
for the vehicle to reach the goal as a measure of effi-
ciency, and the average total acceleration over time as a
measure of driving smoothness. We performed a large
number of simulations, 15,000 trials each for both IS-
DESPOT and DESPOT, in order to obtain reliable data,
because the low collision rate makes it difficult to obtain
an accurate estimate.

The results show that the average collision rate for IS-
DESPOT is nearly 4 times lower than that for DESPOT
(Figure 11b). Further, the collision rate does not de-
crease much as the collision penalty increases. Together
this suggests that DESPOT likely fails to sample some
critical events, and the performance gain of IS-DESPOT
comes from improved sampling. DESPOT and IS-
DESPOT are comparable in terms of average travel time
and total acceleration (Figures 11c and 11d). Overall
IS-DESPOT improves driving safety without much sac-
rifice on efficiency or smoothness.

7 Discussion

The importance distribution has significant impact on
the performance of IS-DESPOT. Sometimes we can
construct it manually based on domain-specific knowl-
edge (Section 6). It is, however, not always easy to do
so effectively, as we have seen in the Pocman task (Sec-
tion 5). To automate importance distribution construc-
tion, we propose to learn it from data. Our learning
method is general and domain-independent. However,
it still has several limitations. First, it requires a realis-
tic simulator and significant offline computational time
for simulation in order to generate data. Second, when a
task involves very large state space, we rely on a discrete
feature mapping over the state space during the learn-
ing. Currently, feature selection is manual and relies on
domain-specific knowledge. Selecting features is sim-
pler than specifying the exact importance distribution.

14



DESPOT

IS-DESPOT

Figure 10: Scooter encounters a pedestrian who suddenly changes his intention. Under DESPOT, Scooter triggers the
emergency stop. Under IS-DESPOT, Scooter reaches its goal (orange hexagon) successfully. On top of every video
frame, there are two histograms. Each histogram shows the probabilities of the pedestrians’ three intentions: going to
Cheers (green), going to the garage (red), and standing still (blue). The histogram on the left shows the current belief.
The histogram on the right shows the distribution of samples chosen by DESPOT or IS-DESPOT.
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Figure 11: Performance comparison of DESPOT and IS-DESPOT in autonomous driving amidst pedestrians. (a) An
example simulation environment. (b) Average collision rate versus collision penalty. (c) Average travel time versus
collision penalty. (d) Average total acceleration versus collision penalty.
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Our method has eased the difficulty of importance dis-
tribution construction through learning, but it is not yet
fully automated.

We can also potentially further improve the learn-
ing of the importance distribution through an iterative
scheme. Concretely, we start with an initial importance
distribution q0. We then run IS-DESPOT with q0 offline
to gather data and learn the importance distribution q1.
We iteratively learn the importance distribution qk us-
ing the data gathered from IS-DESPOT with qk−1. The
rationale behind the iterative learning scheme is that, at
each iteration, IS-DESPOT policy is improved by adopt-
ing the importance distribution generated from its previ-
ous iteration, and the improved policy further helps to
learn a better importance distribution for the next itera-
tion.

While IS-DESPOT is presented as a POMDP algo-
rithm, it is in fact more general and applies to belief-
space planning with or without the specific mathemat-
ical structure of the POMDP. To plan near-optimal ac-
tions, it requires only a black-box simulation model for
sampling state-transitions and observations; it does not
require the full probability distribution models. This is
a major advantage in practice. In fact, constructing ac-
curate probability distribution models for complex tasks
such as Pocman or autonomous driving among pedes-
trians is extremely difficult. Further, the formal perfor-
mance guarantee of IS-DESPOT carries through to the
more general setting of belief-space planning without
modification.

8 Conclusion

This paper introduces importance sampling to sampling-
based online planning under uncertainty. Specifically,
IS-DESPOT retains the theoretical guarantee of the orig-
inal DESPOT algorithm, and it outperforms two state-
of-the-art online POMDP algorithms on a test suite of
several distinct robotic tasks.

There are multiple directions to extend this work.
First, our current method for learning the importance
distribution focuses on critical states, but observations
are equally important for planning under uncertainty.
Extending IS-DESPOT to handle critical observations
is straightforward. Second, we want to fully automate
the importance distribution construction through feature
learning. Third, we want to adopt the iterative learn-
ing scheme for learning the importance distribution and
investigate its convergence. Finally, the idea of impor-
tance sampling is general and can be applied to other
MDP and POMDP planning algorithms (e.g., (Bai et al.,
2010; Kearns et al., 2002; Silver and Veness, 2010)).
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A Proofs

A.1 Theorems 1 and 2

To prove Theorem 1, we rely on an earlier result (Somani et al., 2013):

Theorem 5. For any τ, α ∈ (0, 1), every policy tree π ∈ Πb0,D,K satisfies

Vπ(b0) ≥1− α
1 + α

V̂π(b0)− Rmax

(1 + α)(1− γ)
· ln(4/τ) + |π| ln(KD|A||Z|)

αK
,

with probability at least 1 − τ , where V̂π(b0) is the estimated value of π under any set of K randomly sampled
scenarios for belief b0.

The theorem above is similar to Theorem 1, but provides the performance guarantee for the original DESPOT
algorithm, which does not employ importance sampling. There are two key differences. When computing
V̂π(b0) without importance sampling, we use the natural state-transition and observation probability distribution
p(st+1, zt+1|st, at+1) to generate the next state and observation in a simulation sequence ζ; with importance
sampling, we use the importance distribution q(st+1, zt+1|st, at+1). Further, without importance sampling, we
use the reward R(st, at+1) from the POMDP model; with importance sampling, we use the weighted reward
w(ζ0:t)R(st, at+1), where ζ is a simulation sequence that leads to st and w(ζ0:t) is the weight of the sub-sequence
of ζ over the time steps 0, 1, ..., t. To prove Theorem 1, our general idea is to construct a new POMDP with modified
dynamics and reward to account for importance sampling and then apply Theorem 5.

Proof. (Theorem 1) We construct a new POMDP with the state-transition and observation probability distribution
p′(st+1, zt+1|st, at+1) = q(st+1, zt+1|st, at+1) and reward function R′(st, at+1) = w(ζ0:t)R(st, at+1). Running
DESPOT algorithm on this new POMDP model and running IS-DESPOT on the original model generate exactly the
same simulation sequences with same total rewards. It then follows from Theorem 5 that

V ′π(b0) ≥1− α
1 + α

V̂π(b0)− R′max

(1 + α)(1− γ)
· ln(4/τ) + |π| ln(KD|A||Z|)

αK
, (17)

where V ′π(b0) is the value of π at b0 under the new model and R′max = maxs∈S,a∈AR
′(s, a). Note that

max
s∈S,a∈A

R′(s, a) = max
ζ0:t

st∈S,at+1∈A

w(ζ0:t)R(st, at+1)

≤

{
max
s,s′∈S
a∈A,z∈Z

p(s, z|s′, a)

q(s, z|s′, a)

}t
Rmax.

Since Es,z∼q(s,z|s′,a)
p(s,z|s′,a)
q(s,z|s′,a) = 1 for all s′ ∈ S and a ∈ A, we have

max
s,s′∈S
a∈A,z∈Z

p(s, z|s′, a)

q(s, z|s′, a)
≥ 1.

Hence

R′max ≤

{
max
s,s′∈S
a∈A,z∈Z

p(s, z|s′, a)

q(s, z|s′, a)

}t
Rmax

≤

{
max
s,s′∈S
a∈A,z∈Z

p(s, z|s′, a)

q(s, z|s′, a)

}D
Rmax

= WmaxRmax,

(18)
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as t ≤ D. Combining (17) and (18), we have

V ′π(b0) ≥1− α
1 + α

V̂π(b0)− RmaxWmax

(1 + α)(1− γ)
· ln(4/τ) + |π| ln(KD|A||Z|)

αK
. (19)

It remains to show that π has the same value under the new and the original POMDP models. By definition,

V ′π(b0) = Eζ∼q(ζ|b0,π)

( ∞∑
t=0

γtw(ζ0:t)R(st, at+1)

)

=

∫ ∞∑
t=0

γtw(ζ0:t)R(st, at+1)q(ζ|b0, π) dζ

=
∞∑
t=0

∫
p(ζ0:t|b0, π)

q(ζ0:t|b0, π)
γtR(st, at+1)q(ζ|b0, π) dζ.

Since the reward R(st, at+1) does not depend on the subsequence ζt+1:∞, we marginalize it out and get

V ′π(b0) =

∞∑
t=0

∫
p(ζ0:t|b0, π)

q(ζ0:t|b0, π)
γtR(st, at+1)q(ζ0:t|b0, π) dζ0:t

=
∞∑
t=0

∫
p(ζ0:t|b0, π)γtR(st, at+1) dζ0:t

=

∫ ∞∑
t=0

γtR(st, at+1)p(ζ|b0, π) dζ

= Vπ(b0).

(20)

The third line above again follows from marginalization over the subsequence ζt+1:∞.
Finally, putting together (19) and (20), we get the desired result. �

To prove Theorem 2, we use Theorem 1 and follow the same steps as the proof of Theorem 2 in (Somani et al.,
2013). We omit the details here.

A.2 Theorem 3

Proof. Given a policy π, we want to estimate Vπ(b), the value of π at the belief b, with the importance distribution
q(s). The variance of the estimator b(s)

q(s)v is

Var

(
b(s)

q(s)
v

∣∣∣∣π) = E
(
b(s)2

q(s)2
v2

∣∣∣∣π)− [E( b(s)q(s)
v

∣∣∣∣π)]2

=

∫
b(s)2

q(s)2
v2p(v|s, π)q(s) dv ds−

[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

=

∫
b(s)2

q(s)

(∫
v2p(v|s, π) dv

)
ds−

[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

=

∫
b(s)2

q(s)

(
[E (v|s, π)]2 + Var(v|s, π)

)
ds−

[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

.

(21)
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Substituting q∗π(s) =
b(s)
√

[E(v|s,π)]2+Var(v|s,π)

Eb
(√

[E(v|s,π)]2+Var(v|s,π)
) into (21), we get

Var

(
b(s)

q∗π(s)
v

∣∣∣∣π) = Eb
(√

[E (v|s, π)]2 + Var(v|s, π)

)
×
∫ √

[E (v|s, π)]2 + Var(v|s, π) b(s)ds−
[
E
(
b(s)

q∗π(s)
v

∣∣∣∣π)]2

=

[
Eb
(√

[E (v|s, π)]2 + Var(v|s, π)

)]2

−
[
E
(
b(s)

q∗π(s)
v

∣∣∣∣π)]2

Unnormalized importance sampling is unbiased. Thus, for any arbitrary importance distribution q(s),

E
(
b(s)

q∗π(s)
v

∣∣∣∣π) = E
(
b(s)

q(s)
v

∣∣∣∣π) ,
and

Var

(
b(s)

q∗π(s)
v

∣∣∣∣π) =

[
Eb
(√

[E (v|s, π)]2 + Var(v|s, π)

)]2

−
[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

=

[
Eq
(
b(s)

q(s)

√
[E (v|s, π)]2 + Var(v|s, π)

)]2

−
[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

≤ Eq
(
b(s)2

q(s)2

(
[E (v|s, π)]2 + Var(v|s, π)

))
−
[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

=

∫
b(s)2

q(s)

(
[E (v|s, π)]2 + Var(v|s, π)

)
ds−

[
E
(
b(s)

q(s)
v

∣∣∣∣π)]2

= Var

(
b(s)

q(s)
v

∣∣∣∣π) .
The third line above follows because [E(X)]2 ≤ E(X2) for any random variable X by the Cauchy-Schwarz inequal-
ity, and the last line follows from (21). Therefore, the variance of the estimator with importance distribution q∗π(s) is
no greater than that with any other importance distribution, and q∗π(s) is optimal. �

A.3 Theorem 4

Proof. By the definition of V̂π′,q∗π(b),

V̂π′,q∗π(b) =
1

K

K∑
i=1

b(si)

q∗π(si)
vi, vi ∼ p(v|si, π′), si ∼ q∗π(s),

where p(v|si, π′) is the probability distribution over the value v of following policy π′ from the starting state si. Since
the states are sampled independently,

Var
(
V̂π′,q∗π(b)

)
=

1

K
Varq∗π

(
b(s)

q∗π(s)
v

∣∣∣∣π′)

Similar to (21), we get

Var

(
b(s)

q∗π(s)
v

∣∣∣∣π′) =

∫
b(s)2

q∗π(s)

([
E(v|s, π′)

]2
+ Var(v|s, π′)

)
ds− Vπ′(b)2
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where Vπ′(b) = Eq∗π

(
b(s)
q∗π(s)v

∣∣∣∣π′) is the value of policy π′ at b. Hence

Var
(
V̂π′,q∗π(b)

)
=

1

K

{∫
b(s)2

q∗π(s)

([
E(v|s, π′)

]2
+ Var(v|s, π′)

)
ds− Vπ′(b)2

}
≤ 1

K

{
(1 + ε)

∫
b(s)2

q∗π(s)

(
[E (v|s, π)]2 + Var(v|s, π)

)
ds− Vπ′(b)2

}
The second line above follows from the given conditions: Var(v|s,π′)

Var(v|s,π) ≤ 1 + ε and [E(v|s,π′)]2

[E(v|s,π)]2
≤ 1 + ε for all s ∈ S and

some ε > 0. Let Vπ(b) = E
(

b(s)
q∗π(s)v

∣∣∣∣π).

Var

(
b(s)

q∗π(s)
v

∣∣∣∣π′) ≤ 1

K

{
(1 + ε)

(∫
b(s)2

q∗π(s)

(
[E (v|s, π)]2 + Var(v|s, π)

)
ds

− Vπ(b)2 + Vπ(b)2

)
− Vπ′(b)2

}

Similar to (21), we have∫
b(s)2

q∗π(s)

(
E[v|s, π]2 + Var(v|s, π)

)
ds− Vπ(b)2 = Var

( b(s)
q∗π(s)

v|π
)
.

Hence

Var

(
b(s)

q∗π(s)
v

∣∣∣∣π′) ≤ 1 + ε

K
Varq∗π(

b(s)

q∗π(s)
v|π) +

1

K

(
(1 + ε)Vπ(b)2 − Vπ′(b)2

)
= (1 + ε)Var

(
V̂π,q∗π(b)

)
+

1

K

(
(1 + ε)Vπ(b)2 − Vπ′(b)2

)
≤ (1 + ε)Var

(
V̂π,q∗π(b)

)
+

1 + ε

K
V ∗(b)2

= (1 + ε)

(
Var(V̂π,q∗π(b)) +

1

K
V ∗(b)2

)
.

�
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