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Abstract—State-of-the-art sampling-based online POMDP
solvers compute near-optimal policies for POMDPs with very
large state spaces. However, when faced with large observation
spaces, they may become overly optimistic and compute sub-
optimal policies, because of particle divergence. This paper
presents a new online POMDP solver DESPOT-α, which builds
upon the widely used DESPOT solver. DESPOT-α improves the
practical performance of online planning for POMDPs with large
observation as well as state spaces. Like DESPOT, DESPOT-
α uses the particle belief approximation and searches a deter-
minized sparse belief tree. To tackle large observation spaces,
DESPOT-α shares sub-policies among many observations during
online policy computation. The value function of a sub-policy is
a linear function of the belief, commonly known as α-vector. We
introduce a particle approximation of the α-vector to improve the
efficiency of online policy search. We further speed up DESPOT-
α using CPU and GPU parallelization ideas introduced in
HyP-DESPOT. Experimental results show that DESPOT-α/HyP-
DESPOT-α outperform DESPOT/HyP-DESPOT on POMDPs
with large observation spaces, including a complex simulation
task involving an autonomous vehicle driving among many
pedestrians.

I. INTRODUCTION

To work in unstructured and uncontrolled environments like
our homes and offices, a robot needs to represent the system
with a large number of state variables. In addition to that, it
cannot rely on complete information about the system state;
the robot has to gather information from noisy sensors and do
decision making under uncertainty. Real world sensors like
vision, touch, sound, etc. often provide very high dimensional
observations. Thus planning under uncertainty with very large
state and observation spaces is essential for service robots.

Partially Observable Markov Decision Processes (POMDPs)
provide a principled framework for planning under uncertainty.
Unfortunately, solving POMDPs exactly is computationally
intractable. The computational difficulties come from various
sources. First, POMDP solvers need to maintain a condi-
tional distribution of the states given the action-observation
history, also called a belief, as a sufficient statistic for making
future decisions. The state space, and correspondingly the
dimensionality of the belief size grows exponentially with the
number of state variables; this is an effect of the curse of
dimensionality. Many POMDP solvers do online planning by
doing forward search from the current belief, constructing a
tree which branches each time an action is required, and also
each time an observation may be observed. The belief tree

(a) DESPOT Search Tree: Small (left) and large (right) observation space

(b) DESPOT-α Search Tree

Fig. 1: Each tree node represents a belief. Solid line circles
are belief nodes and black squares are belief-action nodes. On
taking action a, all particles (circular dots) transition to next
state and produce observations. For DESPOT, particles which
produce the same observation go to the same child belief node.
For DESPOT-α, all particles go to child belief nodes. Each
node consists of particle weights (diamond shapes) also and
observations only affect particle weights. The belief nodes
which differ from each other only in last observation are
sibling belief nodes (Marked by dotted circle).

grows exponentially with depth; this is the curse of history.
State-of-the-art online POMDP solvers like DESPOT [19]

and POMCP [15] use Monte Carlo methods for both belief
tracking and tree search in order to handle the curse of
dimensionality. These solvers represent a belief by a set of
sampled states called particles to overcome the issue of large
state space; they further sample action-observation trajectories
to compute approximate value of different policies for current
belief quickly. Current state-of-the-art solvers can compute
near-optimal policies for POMDPs with large state spaces.

However when observation space is large, particles quickly
diverge into separate belief nodes in the belief tree, each of
which contains only a single particle, due to the very low
probability of generating same observation twice. This leads to
solvers generating policies that underestimate the uncertainty,
leading to poor and over-optimistic actions. This issue has also
been highlighted by Sunberg and Kochenderfer [21]. Fig. 1a
illustrates this issue for DESPOT solver.
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In this paper, we address the large observation space issue
within the DESPOT solver, although the ideas used may also
be useful for other solvers. To deal with particle divergence,
instead of partitioning the particles according to the obser-
vation that each particle generates, we use all the particles
to represent beliefs for different observations generated (see
Fig. 1b). Observations only affect the weight of each particle
which is updated according to the relative likelihood of the
observation. Thus each node in the tree has the same number
of particles as the root of the tree, which prevents the over-
optimistic evaluation of value of the belief.

However, by propagating each particle to every child be-
lief node, we lose some of the computational efficiency of
DESPOT. To regain some of the efficiency, we use ideas from
dynamic programming by maintaining a partial value function.
It is known that the value function of a POMDP can be
approximated arbitrarily well by a convex piece-wise linear
function of the belief, where each linear function is called an
α-vector [16] i.e.

V (b) = max
α∈Γ

∑
s∈S

b(s)α(s) (1)

where Γ is a set of α-vectors. An α-vector is associated with
a conditional plan and for each state s, captures the reward
of executing the plan starting from state s. If we have an
α-vector, then we can use it to evaluate the value of the
associated conditional plan for any belief b by simply doing
the inner product of alpha vector and belief. However, to apply
the concept of α-vectors, we need to know the value of the
conditional plan associated with the α-vector for each state.
The number of components in an α-vector correspond to the
number of states and hence can be exponentially large, and
furthermore, we only keep a sample of states in each node
of the belief tree making the computation of the α-vector
components difficult. The main contribution of this paper is a
method to approximate enough of the α-vectors so that it can
be used to improve online computation of the policy.

We approximate enough of an α-vector to use for the
sibling belief nodes i.e nodes representing beliefs which differ
from each other only in last observation (see Fig. 1b ). In a
determinized tree, all the sibling belief nodes share the same
particles. Thus α-vector components corresponding to those
particles can be shared. While sharing is limited to sibling
belief nodes, this provides substantial gains in the case of large
observation spaces where many sibling belief nodes may be
quite similar in terms of the conditional plan that maximizes
their value. We name our algorithm DESPOT-α (Determinized
Sparse Partially Observable Tree With α-Vector Update).

DESPOT-α shares the same computational bottlenecks as
DESPOT with an additional computation of weight update for
every observation and state pair that can be parallelized easily.
Therefore we are able to use the ideas in Hyp-DESPOT [4], a
parallelized version of DESPOT, to parallelize DESPOT-α as
well. In fact as we will see later, we are able to better utilize
the GPU parallelization in HyP-DESPOT-α as compared to
HyP-DESPOT because each node contains all the particles.

DESPOT-α/HyP-DESPOT-α outperform DESPOT/HyP-
DESPOT on POMDPs with large observation spaces, in-
cluding a complex simulation task involving an autonomous
vehicle driving among many pedestrians.

II. BACKGROUND

A. POMDP

A POMDP is defined by a tuple < S,A,Z, T,O,R > where
S is the state space, A is the action space, Z is the observation
space. State transition function T (s, a, s′) = p(s′|s, a) is the
probability of next state s′ when action a is taken in state s.
The observation function O(s′, a, z) = p(z|s′, a) is probability
of observing z in state s′ reached by performing action a.
R(s, a) is the immediate reward obtained on taking action a
in state s. Uncertainty is modeled by maintaining a belief b,
which is a probability distribution over S. The solution to a
POMDP is a policy π : B → A which maps belief b ∈ B
to an action a ∈ A such that the expected total discounted
reward Vπ(b) as defined below is maximized.

Vπ(b) = E

( ∞∑
t=0

γtR(st, π(bt))|b0 = b

)
. (2)

Here γ is the discount factor, b0 is the initial belief. By
reasoning in belief space, POMDPs are able to maintain
a balance between exploration and exploitation and hence
provide a principled framework for decision making under
uncertainty. The solution to a POMDP can be found using
Bellman’s principle of optimality:

V ∗(b) = max
a∈A

Q∗(b, a) (3)

where

Q∗(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
z∈Z

p(z|b, a)V ∗
(
τ(b, a, z)

)
(4)

B. RELATED WORK

Most of the practical solvers try to approximate the value
function V ∗(b), by sampling the beliefs from belief space.
There are two types of solvers: offline and online. Offline
solvers, e.g. [2, 8, 11, 13, 18, 20, 22, 23], approximate optimal
policies for different beliefs offline and use the pre-computed
policy for online execution. Bai et al. [2] use α-vectors for
continuous state and observation POMDPs for offline planning
– the approach is difficult to modify for online planning.
Offline solvers can compute very good policies for the sampled
beliefs but they are difficult to scale up to large POMDPs
due to large increase in the number of beliefs that should be
sampled to cover most situations that will occur in execution.

Online solvers, e.g. [3, 5, 10, 14, 15, 19, 21], compute the
best policy only for the current belief at every step and need
not pre-compute near-optimal policies for different beliefs. A
near-optimal policy is generally computed by doing forward
search in a sparse belief tree of depth D. Online solvers can
scale to very large POMDPs but are slower than offline solvers
as they do forward search at every step. Thus fast online search
is critical for online solvers. A sparse sampling method by



Kearns et al. [10] is an online algorithm which can potentially
deal with large observation spaces because it samples a fixed
number of C observations for each action branch resulting in
tree size of O(CD|A|D), where |A| is the number of actions.
Kearns et al. [10] provide a theoretical performance bound
which is independent of the size of the observation space.
However the algorithm can be computationally inefficient due
to the large tree size and is rarely used in practice.

One of the most widely used online POMDP solver,
DESPOT [19], gains computational efficiency by making a
tree of size |A|DK, using K sampled scenarios. The idea
of sampled scenarios is also used by [9, 12] but for offline
planning. K is much smaller than CD for many problems but
DESPOT suffers from the particle divergence problem when
the observation space is large. Our approach can be viewed as
a mix of SparseSampling and DESPOT. We construct a tree
of size O(CD|A|D) like sparse sampling but use determinized
scenarios like DESPOT. Determinized scenarios allow us to
use α-vectors to reduce computation.

Another widely used online POMDP solver, POMCP [15]
also suffers from particle divergence when the observation
space is large. Sunberg and Kochenderfer [21] extended
POMCP for POMDPs with large observation space with two
approaches: POMCPOW and PFT-DPW. Like DESPOT-α,
both the approaches use the idea of weighted particles to
address the problem of particle divergence. However, they
do not share the value function calculation among different
belief nodes and hence would require a much longer planning
time to compute near-optimal policy. This is reflected in their
experiments where they are not able to outperform DESPOT
on large scale problems like Laser Tag and Multilane.

One way of dealing with the issue of particle divergence is
to group observations together. We can merge the observations,
when the value of the resulting beliefs is maximized by the
same α-vector. Hoey and Poupart [7] try to group observations
based on this criteria. However they demonstrate results on
POMDPs with very small state space. We are implicitly
grouping beliefs whose values are maximised by same α-
vector by sharing α-vectors between sibling belief nodes.

III. OUR APPROACH

As our algorithm is based on DESPOT, we first give a brief
overview of it. For details please see [19].

A. DESPOT

For fast online search, DESPOT samples K scenarios for
the current belief. A scenario for a belief b is a sequence
φ = (s0, φ1, φ2, ...) where s0 is randomly sampled from b
and φi is a random number sampled from uniform distribution
with range [0, 1]. Scenarios are used to 1) represent belief as
a set of particles; 2) determinize the generation of next state
and observation for the sampled state using φi when different
actions are applied during forward search. Forward search does
explore and backup operations repeatedly as explained below.

1) Explore: Exploration consists of multiple trials to build
a determinized sparse belief tree incrementally. Initially the
tree contains only the root node with K particles representing
the current belief b0. Then multiple trials are done with each
trial traversing a path from root node to a leaf node. The leaf
node is then expanded by applying all actions to each particle
in the leaf node. The particles which produce same observation
for a given action are grouped together and represent the belief
for a new belief node. Thus the resulting belief tree (See Fig.
1a) contains all the action edges but only the observation edges
that are reachable through sampled scenarios.

To make sure that even the partially constructed tree is able
to compute a good policy, heuristics based on upper bound
and lower bound [17] on the value of belief nodes are used to
guide the search. Default policies can be used to calculate a
lower bound and state based heuristics can be used to calculate
upper bound on the value of each belief node using Eq. 2
and each belief-action node using Eq. 4. To explore the most
promising parts of the tree first, each trial picks the action a∗

that maximizes the upper bound (Q(b, a)) for the belief node
b and the observation z∗ which maximizes weighted excess
uncertainty (WEU ) for child belief node b′ = τ(b, a∗, z).
WEU is defined as follows:

WEU (b′) = p(z|b, a∗)excess(b′) (5)
= p(z|b, a∗)(ε(b′)− ξε(b0)) (6)

where b′ is reachable from b through a∗, z. ε(b) = V (b)−V (b)
is the gap in the lower bound and upper bound at belief node
b and ξ is a parameter used to control the desired uncertainty
level at leaf nodes.

2) Backup: The trial ends when either the maximum depth
is reached or WEU becomes negative. After that, the lower
bound and upper bound are updated for each node encountered
during trial using Bellman update Eq. 3, 4.

The trials continue until the desired gap ε(b) at the root
node is reached or the time limit is reached.

B. DESPOT-α

DESPOT-α also does a similar anytime forward search
through trials consisting of exploration and backup on sampled
scenarios. However instead of propagating only the particles
producing the same observation to the child of a belief-action
node, we propagate all the particles to the child nodes (Fig.
1b) and update the weights of particles according to relative
likelihood of observation p(z|s, a). This is similar to a particle
filter. p(z|s, a) values are also generally available for particle
filtering. For a belief b, represented by the particle set Φb, with
each particle having weight wb(s), the weight of particles in
child belief node τ(b, a, z) is:

wτ(b,a,z)(s
′) =

p(z|s′, a)
∑
s∈Φb

p(s′|s, a)wb(s)

p(z|b, a)
(7)

where p(z|b, a) =
∑

s′∈Φτ(b,a,z)

p(z|s′, a)
∑
s∈Φb

p(s′|s, a)wb(s).

In our determinized tree, a particle s transitions to only one
particle s′ i.e. Φb has one to one correspondence with



Φτ(b,a,z). Let s′− be the particle in Φb that transitions to
particle s′ and let s+ be the particle in Φτ(b,a,z) to which
particle s transitions. Then

p(z|b, a) =
∑

s′∈Φτ(b,a,z)

wb(s
′
−)p(z|s′, a) =

∑
s∈Φb

wb(s)p(z|s+, a)

(8)
and

wτ(b,a,z)(s
′) =

p(z|s′, a)wb(s
′
−)

p(z|b, a)
(9)

The resulting tree is a determinized sparse belief tree as
it still contains only the observation branches reachable by
sampled scenarios. However every belief-action node can have
up to C child belief nodes: as we do not use observations
to decide which particles will go into each child node, we
can sample only C(≤ K) instead of K observations from K
scenarios by using only C out of K scenarios to generate
observations. Always having C child belief nodes prevents
over optimistic evaluation of value of belief but also makes
the tree size (C|A|)D. As we will see later in this section, we
can use α-vectors to share the computation done for one trial
among sibling belief nodes for improving lower bounds.

Note that eventually after few information gathering actions,
most of the weight would be concentrated around a few
particles in the search tree. Particle filters do re-sampling when
this happens. However in the search tree, re-sampling is not
required as we only need to estimate the reward which gets
discounted as depth increases.

1) α-Vector Derivation For DESPOT-α: We can use Eq. 3
to calculate the value of belief node approximating belief b by
K particles in set Φb as follows:

V (b) = max
a∈A

Q(b, a) (10)

where

Q(b, a) =
∑
s∈Φb

wb(s)R(s, a) + γ
∑

z∈Cb,a

p(z|b, a)V
(
τ(b, a, z)

)
(11)

Unfortunately, the sampled observations may not contain all
possible observations. To handle this, we can divide the second
term on right hand side in Eq. 11 by a normalization constant
η =

∑
z∈Cb,a p(z|b, a). However this makes the value of α-

vector derived in Eq. 17 dependent on η, which is dependent
on the weights of the particles. With this dependency, α-
vectors cannot be shared among sibling belief nodes.

To overcome this issue, we assume a dummy observation
zres, that contains all unsampled observations. Thus |Cb,a| =
C + 1. When a large enough set of observations is sampled,
the probability of zres is small. We will discuss in section
III-B2, how we determine p(zres|s, a).

For faster computation, we wish to define the approximate
lower bound on value of belief node using α-vectors as
follows:

V n(b) =
∑
s∈Φb

wb(s)αn,b(s) (12)

where n is the depth of the tree below the node. We add
it as a subscript only for induction derivation. We show by
induction that value function can be defined as above for our

determinized sparse belief tree. For leaf nodes i.e. n = 0, Eq.
12 holds as we can define

α0,b(s) = αdefb0,ζ(b)
(s) =

∞∑
t=d

γdR(st, πdef (b0, ζ(b))|sd = s)

(13)
where ζ(b) = a0, a1...ad−1 is the action sequence followed
to reach the leaf node b at depth d. Our default policy πdef
is only dependent on initial belief b0 and the action sequence
ζ(b). Any fixed-action policy satisfies this. The value of such
a policy can be used as a lower bound (See Hauskrecht [6]).

Now suppose Eq. 12 holds for n. Then

V n+1(b) = max
a∈A

{∑
s∈Φb

wb(s)R(s, a)+γ
∑

z∈Cb,a

p(z|b, a)V n

(
τ(b, a, z)

)}
(14)

Substituting value of V n
(
τ(b, a, z)) from Eq. 12 and value of

wτ(b,a,z)(s
′) from Eq. 9 we get:

V n+1(b) = max
a∈A

{∑
s∈Φb

wb(s)R(s, a)+

γ
∑

z∈Cb,a

∑
s′∈Φτ(b,a,z)

wb(s
′
−)p(z|s′, a)αn,τ(b,a,z)(s

′)
}

= max
a∈A

{∑
s∈Φb

wb(s)R(s, a)+

γ
∑

z∈Cb,a

∑
s∈Φb

wb(s)p(z|s+, a)αn,τ(b,a,z)(s+)
}

(15)

For node at level n+ 1, we can re-write Eq. 15 as:

V n+1(b) =
∑
s∈Φb

wb(s)
(
αn+1,b(s)

)
s.t. αn+1,b(s) = αa∗

n+1,b(s) (16)

where a∗ = arg max
a∈A

{ ∑
s∈Φb

wb(s)α
a
n+1,b(s)

}
with

αan+1,b(s) = R(s, a) + γ
∑

z∈Cb,a

p(z|s+, a)αn,τ(b,a,z)(s+)

(17)
As sibling belief nodes share the same set of scenarios

with different weights, α-vector calculated for one belief node
can be used to calculate approximate lower bound for the
sibling belief nodes by simply doing an inner product of
weights of the particles and the α-vector. This allows us
to provide an approximation without expanding those nodes.
If the observations result in similar beliefs in terms of the
conditional plan which maximizes their values, which we
believe would often hold for very large observation space, the
approximation will be effective.

The α-vectors only provide approximate lower bounds for
the belief node values. For better exploration, we also need
to update the upper bounds on sibling belief node values. We
use SAWTOOTH approximation [6] for this.

2) zres Observation Probability: In order to increase the
weight on the sampled observations, we try to minimize the
probability assigned to zres by re-weighting p(z|s′, a). Let

ηmax = max
s′

∑
z∈Cb,a\zres

p(z|s′, a) (18)



Then let l(z|s′, a) = p(z|s′, a)/ηmax and l(zres|s′, a) = 1 −∑
z∈Cb,a\zres l(z|s

′, a). Using l(z|s′, a) instead of p(z|s′, a)
increases the weight on the sampled observations while keep-
ing the probabilities proportional to the original probability
distribution. This also allows us to use p(z|s′, a) values which
are only proportional to true probability values. Experimental
results show that this works well in practice.

Algorithms 1-5 provide pseudo-code of DESPOT-α. Since
many belief nodes can be reached by same action se-
quence and differ only in observation branches, we store
action sequence data (AD) for each action sequence en-
countered. An entry in AD for a sequence ζ(b) is a tuple
< P,Z,R,L, αdef , αdef , αpp > where P is the set of par-
ticles, Z is a set of up to C sampled observations, R is
the immediate rewards, L is observation likelihoods for each
sampled observation and particle, αdef = αdefb0,ζ(b)

is default
lower bound alpha vector, αdef is the default upper bound
vector and αpp is upper bound per particle.

Default upper bound is computed as an inner product of
default upper bound for each particle with particle weights.
Thus we store the default upper bound value for each particle
in αdef . αpp is stored for sawtooth approximation as it
represents upper bound for beliefs at extreme corners. This
data can be used by all the child belief nodes which are
reached from root node following the same action sequence.
Thus we only need to make K|A|D calls to transition model
and CK|A|D to observation model.

We maintain the best α-vector for each belief node along
with the lower bound value. During backup, in addition to
updating the lower/upper bounds of the nodes visited during
the trial, we also update the lower/upper bounds of sibling
nodes (See algorithm 3, 5). Thus we need fewer trials.

Even though we need fewer trials than DESPOT, for a given
trial we have to do more computation to calculate lower/upper
bounds using default policy for all the K particles while
expanding a node. We also need to compute p(z|s′, a) for
all C child nodes which is O(KC) operation. If the problem
scale in terms of number of actions or number of particles K
is large, or if the default policies have very long horizon, we
might not be able to do enough number of trials. Therefore,
we parallelize the tree search as discussed next.

C. HyP-DESPOT-α

HyP-DESPOT [4] is a parallel tree search algorithm which
parallelizes sparse belief tree search in DESPOT. CPU threads
do EXPLORE and BACKUP (lines 7-11 in Alg. 1) and invoke
GPU kernels for EXPAND i.e transition each particle to next
state for different actions and calculate lower/upper bound
(Line 4 in Alg. 4). We can use the same framework to
parallelize our search. Since the particles do not diverge during
search, we can better utilize GPU parallelization as we will
always have K particles to expand in parallel. Our EXPAND
algorithm contains additional calculation of p(z|s′, a) for each
state observation pair (Line 5 in Alg. 4). For this we simply
add an additional GPU kernel during node expansion which
parallelizes |A|KC operations. We do not currently parallelize

Algorithm 1: BUILDDESPOTALPHA(b0)

1 Sample randomly a set Φb0 of K scenarios from the
current belief b0. Assign weight of 1/K to each particle.

2 Create a new DESPOT D with a single node b0 as the
root. Initialize AD← {}, ζ(b0)← ∅. Compute αdef ,
αdef , αpp for each particle in Φb0 .

3 AD(ζ(b0))←< Φb0 , ∅, ∅, ∅, αdef , αdef , αpp >.
4 αb0 ← αdef .
5 Compute lower, upper bound (V (b0), V (b0)) by dot

product of αdef and αdef with particle weights.
6 ε(b0)← V (b0)− V (b0).
7 while ε(b0) > ε0 and the total running time is <Tmax do
8 b← EXPLORE(D, b0).
9 BACKUP(D, b).

10 ε(b0)← V (b0)− V (b0).
11 end
12 return arg max

a∈A
αab0

Algorithm 2: EXPLORE(D, b)
1 while depth(b) ≤ D and WEU (b) > 0 do
2 EXPAND(b, D) if b is a leaf node in D.
3 a∗ ← arg maxa∈AQ(b, a).
4 z∗ ← arg maxz∈Zb,a∗ WEU(τ(b, a∗, z)).
5 b← τ(b, a∗, z∗).
6 end
7 return b.

the weight computation (Lines 15-16 in Algorithm 4) because
latency of copying weights to and from GPU memory is
higher than doing the inner product computation. If the number
of sampled scenarios are so large that the computation time
exceeds memory latency then we can parallelize this part too.

IV. EXPERIMENTS

To evaluate (HyP-)DESPOT-α, we run it on the following
problems with large observation spaces in simulation: 1) TigerI
2) Danger Tag 3) RockSample 4) Navigation in partially
known map 5) Multi-agent rock sample 6) Car driving among
pedestrians. We compare the results of DESPOT-α with the
state-of-the art online POMDP solver DESPOT for all these
problems. We choose DESPOT as a baseline because only
DESPOT has a parallel version available which can scale to
very large problems and compute policy for time-critical task
like car driving in just 0.1 seconds.

We compare HyP-DESPOT-α with HyP-DESPOT for last 3
problems as they are all large scale problems, with large state
or action space along with large observation space. For all the
experiments, we set C = 10 for (HyP-)DESPOT-α. Planning
time for all the problems is fixed at 1 sec except for car driving
problem for which it is 0.1 sec. From the results in Table I and
II, we can see that DESPOT-α and HyP-DESPOT-α perform
much better as compared to DESPOT and HyP-DESPOT.



Algorithm 3: BACKUP(D, b)
1 for each node x on the path from b to the root of D do
2 if x is not a leaf node in D then
3 Compute new αx, V (x) using Eq. 16
4 if new V (x) > V (x) then
5 V (x)← new V (x)
6 αx ← new αx
7 end
8 Compute new V (x), AD(ζ(b)).αpp using Eq. 10.

Update V (x), AD(ζ(b)).αpp if > new value.
9 end

10 UPDATESIBLING(x,y) for each sibling y of x.
11 end

Algorithm 4: EXPAND(b, D)

1 foreach a ∈ A do
2 Add a new node (b, a) as child of b in D.
3 if ζ(b), a 6∈ AD then
4 Collect P,Z,R by applying action a to each

particle in AD(ζ(b)).P . Compute αdef ,αdef ,
αpp using default policy for each particle in P

5 L(z, s′)← p(z|s′, a) for each z ∈ Z, s′ ∈ P .
6 Compute ηmax using Eq 18 and use it to

reweight L(z, s′) for each z ∈ Z, s′ ∈ P .
7 L(zres, s

′)← l(zres|s′, a) for each s′ ∈ P .
8 Z ← Z ∪ zres
9 AD(ζ(b), a)←< P,Z,R,L, αdef , αdef , αpp >

10 end
11 < P,Z,R,L, αdef , αdef , αpp >← AD(ζ(b), a)
12 foreach z ∈ Z do
13 Add a new node τ(b, a, z) as child of b, a in D.
14 ατ(b,a,z) ← αdef .
15 Compute wτ(b,a,z) using Eq 9 for each s′ ∈ P .
16 Compute bounds (V (τ(b, a, z)), V (τ(b, a, z))) by

dot product of αdef and αdef with wτ(b,a,z).
17 end
18 end

Results also show that HyP-DESPOT-α can leverage GPU
parallelization better than HyP-DESPOT as we see a wider
performance gap between HyP-DESPOT-α and DESPOT-α as
compared to HyP-DESPOT and DESPOT. Next, we describe
the test problems and discuss the results.

A. TigerI

In the original tiger problem, a tiger is hidden behind one
of the 2 doors. Thus there are 2 states, Tiger Left (TL) and
Tiger Right (TR). The robot can either open one of the doors or
listen to the tiger. Opening a door with the tiger leads to a high
penalty of −100. Opening the other door gives a reward of 10.
The Listen action tells whether the tiger is behind the left door
(Observation = TL) or the right door (Observation = TR) with
some error. Thus there are 2 observations. The optimal policy
is to listen before opening the door. The number of times one

Algorithm 5: UPDATESIBLING(btrial, bsib)

1 Compute V ′(bsib) as dot product of wbsib and αbtrial
2 if V ′(bsib) > V (bsib) then
3 V (bsib)← V ′(bsib)
4 αbsib ← αbtrial
5 end
6 Compute V

′
(bsib) using SAWTOOTH Aprroximation

with values V (btrial) and AD(ζ(btrial)).α
pp.

7 Update V (bsib) if V
′
(bsib) < V (bsib).

should listen depends on the accuracy of the listen action.
For the version with a large observation space, we discretize

a continuous observation z that is between 0 and 1 into N
levels. To demonstrate the problem with information gathering
when observation space is large, we define 2 listen actions: L1
and L2. L1 is less accurate and has reward of −1. L2 is more
accurate but has reward of −1.2. We define:

p(z|s, a) =

{
g(z,s)
N (s,a) , if z ∈ [u(a), u(a) + ε) ∪ [l(a)− ε, l(a))

0, otherwise
(19)

where N (s, a) is a normalizing constant. We set g(z, s) = z
for s = TR and g(z, s) = 1 − z for s = TL, i.e.
if the tiger is on the right, larger values of z have larger
probability, and if the tiger is on the left, smaller values
of z have larger probability. The effect of different actions
is controlled by the support of observations that have non-
zero probability; more accurate action L2 allows non-zero
probability for observations near 1 and 0, i.e. u(L2) = 0.9 and
l(L2) = 0.1, while less accurate action L1 allows non-zero
probability near 0.5, i.e. u(L1) = 0.65 and l(L1) = 0.35. For
experiments, we set ε = 0.1, N = 100000. The observation
space size for each action is 2εN = 20000. For DESPOT,
K = 500 gives best results. For DESPOT-α, we set K = 100.

In DESPOT search tree, L1 and L2 will produce exactly
same child belief nodes. Since reward for L2 is less than L1,
value of L2 will always be lower than L1. Thus DESPOT
will never choose L2, a better information gathering action,
leading to a lower reward.

B. Danger Tag

Danger Tag is a modified version of Laser Tag problem
described in [19]. The robot has to tag the opponent but does
not know its location. It can only estimate its position based
on distance estimates in 8 directions from the laser sensor.
Thus the observation is a set of 8 integers. For a 14 × 14
grid, the observation space is ∼ 108. The robot can move in
8 directions in a map which contains some danger cells (See
Fig. 2a). If it steps on danger cells, it gets a high penalty of
−100, −1 otherwise. With a probability of 0.3, it can move
either clockwise or anti-clockwise of the intended direction. It
gets a reward of 100 on tagging the opponent correctly.

In this setting, the diagonal path is sub-optimal because of
high probability of stepping on a danger cell. Fig. 2c shows
that DESPOT still takes the diagonal path. This is because
optimizing for each individual particle makes DESPOT think



(a) Danger Tag (b) DESPOT-α (c) DESPOT

Fig. 2: b) and c) show the frequency of robot positions during
500 runs. Red means higher frequency.

that it will be able to find a diagonal path without stepping
onto danger cells, giving a high value to the diagonal path.
When there are multiple particles in the belief node as is the
case with DESPOT-α, using the diagonal path for one particle
would result in some other particle stepping onto danger cells.
This decreases the value of the diagonal path. See Fig. 2b.

C. Navigation in partially known map

This is similar to navigation problem in [4]. The robot has
to navigate in a 13×13 map (See Figure 3a) with fixed (black
cells) and unknown (grey cells) obstacles to reach the goal
through one of the gates. The robot has uncertainty about
its own position and the unknown obstacles in the map. It
has 9 actions, one for movement in each direction and one
STAY action where the robot does not move and only observes
neighbouring cells. After each action, the robot can observe 16
surrounding cells (2 cells in each direction). The observation
tells the robot whether the cell is occupied or not with 0.2
noise. Thus the observation space is 16 dimensional with a size
of 216. STAY action has a penalty of 0.2 while move actions
have a penalty of 0.1. Colliding with an obstacle results in a
penalty of −1. Reaching the goal gives a reward of 20. This
problem has a very large state space of 169× 2124.

This problem is different from the other problems because
all the actions gather information equally and there is no policy
which performs better only under uncertainty. Thus even
though the observation space is large, particle divergence does
not affect the policy much. To compute the optimal-policy,
the key requirement is that the search tree is deep enough
to find the goal during search. Thus DESPOT-α performs
worse than DESPOT in this problem due to its additional
computation overhead of expanding all the particles in nodes
during trials. With a 60 step random action default policy, this
requires lot of computation. In contrast, DESPOT can quickly
search deeper for nodes with just one particle and find the
goal. However GPU parallelization alleviates this computation
overhead. HyP-DESPOT-α is able to perform even better that
HyP-DESPOT because it leverages GPU parallelization better.

1) NavigationI: To see the effect of different information
gathering actions, we set the observation noise of the STAY
action to 0.002 and move actions to 0.4. DESPOT-α outper-
forms DESPOT in this setting. See NavigationI in Table I.

D. Rock Sample(RS)

Rock Sample(m,n) is a standard benchmark POMDP prob-
lem ([17, 19]). The robot needs to collect good rocks from
n rocks which can be either good or bad while moving in a

(a) (b) (c)

Fig. 3: Problems for evaluation of HyP-DESPOT-α. a) Navi-
gation in a partially known map b) Multi-agent rocksample c)
Car Driving among pedestrians

m × m map (see Fig. 3b). The robot has a sensor to check
whether the rock is good or bad. The accuracy of information
decreases exponentially with the distance of the rock from
the robot. Sampling a good rock gives reward of 10, and
sampling a bad rock gives a penalty of −10. The robot can
exit the map from the East side and get a reward of 10. The
number of actions is n+5, n CHECK actions, 4 move actions,
1 SAMPLE action. We make the observation space large in
the same way as in Tiger problem with the support of the
observations depending on distance of the robot from the rock
which is being checked and ε as 0.1. We did experiments with
10, 15 and 20 rocks. m is 20 for 20 rocks and 15 for 10 and
15 rocks. We get best results at K = 50. DESPOT-α performs
better than DESPOT (See Table II) because DESPOT makes
the robot do the CHECK actions repeatedly instead of moving
as particle divergence makes it think that the CHECK action
allows it to identify all the rocks correctly.

1) Multi-Agent Rock Sample(MARS): As described in [4],
MARS has 2 agents for collecting rocks. This makes action
space size (n+ 5)2. Thus we have very large |A| = 225, 400,
625 for 10, 15 and 20 rocks. Still both DESPOT-α and HyP-
DESPOT-α perform better than DESPOT and HyP-DESPOT
respectively. See Table I.

We also compare (HyP)-DESPOT-α running on large ob-
servation version with (HyP)-DESPOT running on the original
version of the problem with only 2 observations for CHECK
action ((HyP)-DESPOT-DIS). See Table III. We can say that
(HyP)-DESPOT-DIS is using prior information to reduce the
observation size to 2. Still, HyP-DESPOT-α which does not
use any prior information is as good as HyP-DESPOT-DIS for
MARS upto |A| = 400. There is only a slight difference at
|A| = 625. DESPOT-α also performs as well as DESPOT-DIS
for the single agent rock sample but worse for MARS. This
is expected because of very high computational overhead with
large number of actions.

E. Car driving among pedestrians

This problem is same as in [1, 4]. The robot car has to drive
along a straight line among pedestrians (See Fig. 3c.) which
can be going in two different directions. Speed of the robot
is controlled by POMDP planner which can take 3 actions:
ACCELERATE, DECELERATE, MAINTAIN. All pedestrians
are assumed to be moving with same speed but have Gaussian
noise in their heading direction. The car is equipped with
LIDAR, which gives it an estimate of the positions of the
pedestrians. However the goal of each pedestrian is unknown



TABLE I: Average total discounted reward achieved by (HyP-)DESPOT and (HyP-)DESPOT-α for large scale problems.

Navigation NavigationI MARS(15,10) MARS(15,15) MARS(20,20) Car Driving

|Z| 216 216 200002 200002 200002 > 1065

DESPOT 6.16± 0.20 0.45± 0.20 17.31± 0.36 13.25± 0.43 12.52± 0.38 −8.52± 0.14

DESPOT-α 4.79± 0.20 2.08± 0.20 24.02± 0.31 16.98± 0.35 13.44± 0.33 −7.96± 0.09

HyP-DESPOT 6.88± 0.19 2.50± 0.22 23.61± 0.50 27.66± 0.41 20.01± 0.51 −7.92± 0.06

HyP-DESPOT-α 7.76 ± 0.16 6.21 ± 0.18 42.43 ± 0.32 52.37 ± 0.31 49.18 ± 0.33 -6.70 ± 0.04

TABLE II: Average total discounted reward by DESPOT and
DESPOT-α for relatively small scale problems.

TigerI Danger Tag RS(15,10) RS(15,15) RS(20,20)

|Z| 20000 ∼ 108 20000 20000 20000

DESPOT −3.96± 0.24 −21.99± 1.87 9.38± 0.21 4.80± 0.29 3.31± 0.11

DESPOT-α 6.19 ± 0.23 -4.48 ± 0.79 32.72 ± 0.25 40.75 ± 0.41 36.43 ± 0.24

TABLE III: Average total discounted reward by (HyP-
)DESPOT-α for large observation (MA)RS and (HyP-
)DESPOT for original (MA)RS with 2 observations.

RS(15,10) RS(15,15) RS(20,20)

DESPOT-DIS 32.25± 0.25 39.29± 0.41 37.40± 0.21

DESPOT-α 32.72± 0.25 40.75± 0.41 36.43± 0.24

MARS(15,10) MARS(15,15) MARS(20,20)

DESPOT-DIS 41.52± 0.25 31.87± 0.41 14.96± 0.35

DESPOT-α 24.02± 0.31 16.98± 0.35 13.44± 0.33

HyP-DESPOT-DIS 43.07± 0.34 51.09± 0.43 55.60± 0.39

HyP-DESPOT-α 42.43± 0.32 52.37± 0.31 49.18± 0.33

and has to be estimated by using the action-observation history.
There is a very high penalty of −1000 on collision with
pedestrians. Every step gets a reward of −0.5. Higher car
speed and smooth driving is encouraged by giving some
additional positive reward. For details, see [1]. The solution
for this problem can be directly transferred to the real robot
car driving among pedestrians as shown in [1, 4].

For this problem, in the true observation model, the pedes-
trian position is fully observed and particle weights are
updated using a noisy transition model. During DESPOT-α
forward search, we assume a deterministic transition model
and update the weights using only the observation model.
Therefore we cannot use true observation model and instead
use a noisy observation model defined as a unit variance
multivariate Gaussian with position of pedestrians in s as
mean. 12 nearest pedestrians are considered. The belief update
after executing a step is done using the true transition and
observation model for both DESPOT and DESPOT-α.

The default lower bound policy used by DESPOT is not
a fixed action policy and does not provide a valid lower
bound for DESPOT-α. Therefore we use a different default
policy which does DECELERATE if car speed is non zero
and MAINTAIN after that. As car speed is fully observable,
all the particles have same car speed in initial belief. Thus
car speed summarizes b0, ζ(b) and can be used to decide
next action. Performance of (HyP-)DESPOT degrades with
this default policy. Thus we do not change the default policy

TABLE IV: Performance comparisons of (HyP-)DESPOT and
(HyP-)DESPOT-α on the autonomous driving task.

Collision rate Traveled distance

DESPOT (K=200) 0.001397 ± 0.00011 12.171± 0.05

DESPOT-α (K=100) 0.001344 ± 0.00010 14.948± 0.03

HyP-DESPOT (K=1000) 0.000431 ±0.00006 11.898 ± 0.07

HyP-DESPOT-α (K=1000) 0.000291 ± 0.00004 15.490 ± 0.03

for (HyP-)DESPOT. (HyP-)DESPOT-α is able to outperform
(HyP-)DESPOT which uses a better default policy, using only
a fixed action default policy. See Table I.

HyP-DESPOT-α computes a policy which makes the car
cover more distance while having a lower collision rate
(number of collisions per meter). See Table IV. DESPOT-α
also performs better than DESPOT, although the difference
in performance is not substantial because DESPOT-α cannot
plan with more than 100 particles in 0.1 sec. With 100 particles
many collisions are not sampled during planning, leading to a
higher collision rate. Beyond 100 particles, DESPOT is also
not able to do many trials. Still it performs best at K = 200 as
it mostly follows the very good hand designed default policy.

V. CONCLUSION

We have provided an online POMDP solver which can deal
with both large state and observation spaces. Through our
experiments, we have shown that our algorithm can generate
significantly better policy when the observation space is large
and can scale to complex real world problems which require
very fast decision making and have complex dynamics. To the
best of our knowledge this has not been demonstrated before.

VI. FUTURE WORK

Apart from sub-optimal policy computation due to particle
divergence, another main issue in planning with very large ob-
servations like images, 3D maps etc. is the slow generation of
observations which makes forward search prohibitively slow.
DESPOT-α can possibly solve this issue as it requires only
p(z|s, a) instead of the actual observation during planning. In
future we would like to explore if we can speed up forward
search using this property. Also we would like to obtain
theoretical performance bounds for our algorithm.
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