
Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation

Peter Karkus Shaojun Cai David Hsu

National University of Singapore

karkus@comp.nus.edu.sg

Abstract

Simultaneous localization and mapping (SLAM) remains

challenging for a number of downstream applications, such

as visual robot navigation, because of rapid turns, feature-

less walls, and poor camera quality. We introduce the Differ-

entiable SLAM Network (SLAM-net) along with a navigation

architecture to enable planar robot navigation in previously

unseen indoor environments. SLAM-net encodes a particle

filter based SLAM algorithm in a differentiable computa-

tion graph, and learns task-oriented neural network com-

ponents by backpropagating through the SLAM algorithm.

Because it can optimize all model components jointly for the

end-objective, SLAM-net learns to be robust in challenging

conditions. We run experiments in the Habitat platform with

different real-world RGB and RGB-D datasets. SLAM-net

significantly outperforms the widely adapted ORB-SLAM in

noisy conditions. Our navigation architecture with SLAM-

net improves the state-of-the-art for the Habitat Challenge

2020 PointNav task by a large margin (37% to 64% success).

Project website: http:// sites.google.com/view/slamnet

1. Introduction

Modern visual SLAM methods achieve remarkable per-

formance when evaluated on suitable high-quality data [19].

However, in the context of downstream tasks, such as indoor

robot navigation, a number of difficulties remain [8; 43; 12].

An imperfect navigation agent captures substantially differ-

ent images from a human, as it may frequently face fea-

tureless walls and produce rapid turns (see Fig. 1). Further,

despite advances in sensor technology, modern robots still

often use cameras with noisy images, low frame rate, and

a narrow field-of-view [32]. These factors make feature ex-

traction and association difficult. Relocalization and loop

closure can be challenging due to environmental changes

and repetitive feature. Finally, integrating SLAM into a navi-

gation pipeline is not trivial, because the map representation

must be suitable for downstream planning, it may need to

capture task-dependent information, and planning must be

able to handle map imperfections.

Go to the

kitchen

Figure 1: Visual robot navigation is challenging for SLAM,

e.g., because the robot frequently faces featureless walls; it

rotates quickly; the onboard camera produces noisy images;

the frame rate is low; etc. The images were take by our

navigation agent in the Habitat environment.

This paper introduces the Differentiable SLAM Net-

work (SLAM-net) together with a navigation architecture for

downstream indoor navigation. The key idea of SLAM-net

is to encode a SLAM algorithm in a differentiable compu-

tation graph, and learn neural network model components

for the SLAM algorithm end-to-end, by backpropagating

gradients through the algorithm. Concretely SLAM-net en-

codes the particle filter based FastSLAM algorithm [44] and

learns mapping, transition and observation models. SLAM-

net fills a gap in the literature on differentiable robot algo-

rithms [55; 23; 34; 35].

The benefit of SLAM-net compared to unstructured learn-

ing approaches is that its encoded particle filter provides a

strong prior for learning. The benefit over classic SLAM

is that all components are learned, and they are directly

optimized for the end-objective. Concretely, SLAM-net

learns RGB and RGB-D observation models for the en-

coded FastSLAM algorithm, which previously relied on

hand-crafted models and lidar sensors. Further, because of

the task-oriented learning, feature extractors can learn be

more robust against domain specific challenges, e.g., faced

with downstream navigation; while on the flip side they may

be less reusable across tasks.

We validate SLAM-net for localization with RGB and

RGB-D input, as well as downstream robot navigation in

previously unseen indoor environments. We use the Habitat

http://sites.google.com/view/slamnet
DH
APPEARED IN

DH
Proc. IEEE Conf. on Computer Vision & Pattern Recognition, 2021

mapping

model

global mapRGB(D)

𝑠!..#

local map

trajectory
estimate

𝑚#

pose estimate

past local maps

trajectory
hypotheses

particle
weight

transition

model

current
obs.

last
obs.	

𝑜#$!

𝑜#

𝑝(Δ𝑠#)

T
ra

n
s

fo
rm

𝑠#"𝑤!𝑠"!
#

!$%

𝑚!..#

										𝑠!..#
%

k=1

K

𝑤#
%;

particles

observation

model

𝑀#

𝑤#
%

transformed
local maps

Figure 2: Differentiable SLAM-net. The global map is maintained by a collection of learned local grid maps. The trajectory is

tracked by a particle filter. Particles represent trajectories and they are updated with learned neural network components: the

mapping, transition, and observation models.

simulation platform [52] with three real-world indoor scene

datasets. We additionally experiment with the KITTI visual

odometry data [20]. SLAM-net achieves good performance

under challenging conditions where the widely used ORB-

SLAM [46] completely fails; and learned models transfer

over datasets. For downstream navigation we propose an

architecture similar to Neural SLAM [10], but with using our

differentiable SLAM-net module. Our approach significantly

improves the state-of-the-art for the CVPR Habitat 2020

PointNav challenge [25].

2. Related work

Learning based SLAM. Learning based approaches to

SLAM have a large and growing literature. For example,

CodeSLAM[7] and SceneCode[63] learn a compact repre-

sentation of the scene; CNN-SLAM[57] learns a CNN-based

depth predictor as the front-end of a monocular SLAM sys-

tem; BA-net [56] learns the feature metric representation and

a damping factor for bundle adjustment. While these works

use learning, they typically only learn specific modules in

the SLAM system. Other approaches do end-to-end learning

but they are limited to visual odometry, i.e., they estimate

relative motion between consecutive frames without a global

map representation [64; 41]. Our method maintains a full

SLAM algorithm and learns all of its components end-to-

end.

Classic SLAM. Classic SLAM algorithms can be di-

vided into filtering and optimization based approaches [53].

Filtering-based approaches maintain a probability distribu-

tion over the robot trajectory and sequentially update the

distribution with sensor observations [14; 4; 15; 44; 45].

Optimization-based approaches apply bundle adjustment on

a set of keyframes and local maps; and they are popular

for both visual [53; 47; 46; 38] and lidar-based SLAM [28].

Our approach builds on a filtering-based algorithm, Fast-

SLAM [44; 45]. The original algorithm (apart from a few

adaptations [5; 40; 27]) works with a lidar sensor and hand-

designed model components. Robot odometry information

is typically used for its transition model, and either land-

marks [44] or occupancy grid maps [21] are used for its

observation model. In contrast, we learn neural network

models for visual input by backpropagation through a differ-

entiable variant of the algorithm. We choose this algorithm

over an optimization based method because of the availabil-

ity of differentiable particle filters [31; 34], and the suitability

of the algorithm for downstream robot navigation.

Differentiable algorithms. Differentiable algorithms

are emerging for a wide range of learning domains, including

state estimation [24; 31; 34; 42], visual mapping [23; 36],

planning [55; 33; 18; 49; 22; 62] and control tasks [2; 50;

17; 6]. Differentiable algorithm modules have been also

composed together for visual robot navigation [23; 35]. This

work introduces a differentiable SLAM approach that fills

a gap in this literature. While Jatavallabhula et al. [30]

have investigated differentiable SLAM pipelines, they focus

solely on the effect of differentiable approximations and do

not perform learning of any kind.

Visual navigation. A number of learning based

approaches has been proposed for visual navigation re-

cently [23; 3; 43; 35; 60; 10; 11; 51]. Modular approaches

include CMP [23], DAN [35] and Neural SLAM [10]. How-

ever, CMP assumes a known robot location, circumventing

the issue of localization. DAN assumes a known map that

is given to the agent. Neural SLAM [10; 51] addresses the

joint SLAM problem, but it relies solely on relative visual

odometry without local bundle adjustment or loop closure,

and thus it inherently accumulates errors over time. We pro-

pose a similar navigation architecture to Neural SLAM [10],

but utilizing our Differentiable SLAM-net module in place

of learned visual odometry.

3. Differentiable SLAM-net

3.1. Overview

The Differentiable SLAM-net architecture is shown

in Fig. 2. Inputs are RGB(D) observations ot, outputs are

pose estimate st and global map Mt. SLAM-net assumes the

robot motion is (mostly) planar. Poses are 2D coordinates

with 1D orientation; the global map is a 2D occupancy grid.

Internally SLAM-net represents the global map as a col-

lection of local maps, each associated with a local-to-global

transformation. Local maps are N×N×Nch grids that, de-

pending on the configuration, may encode occupancy and/or

learned latent features. We add a local map for each obser-

vation, but without knowing the robot pose we do not know

the correct local-to-global map transformation. Instead, the

algorithm maintains a distribution over the unknown robot

trajectory using particle filtering [16]. Our algorithm is based

on FastSLAM [44; 45], and our differentiable implementa-

tion is built on PF-nets [34].

The algorithm works as follows. The particle filter main-

tains K weighted particles, where each particle represents

a trajectory sk0:t. At t = 0 all particle trajectories are set

to the origin; particle weights are constant, and the local

map collection is empty. In each time step a mapping model

predicts a local map mt from the input observation ot, and

mt is added to the collection. Particle trajectories are ex-

tended with samples from a probabilistic transition model

that estimates the relative motion given ot and ot−1. Par-

ticle weights are then updated using an observation model

which measures the compatibility of mt and the past local

maps m1:t−1 assuming the particle trajectory sk0:t was cor-

rect. The pose output is obtained by taking the weighted sum

of particle trajectories. Optionally, a global occupancy grid

map is obtained with simple 2D image transformations that

combine local maps along the mean trajectory.

The key feature of SLAM-net is that it is end-to-end dif-

ferentiable. That is, the mapping, transition and observation

models are neural networks, and they can be trained together

for the end-objective of localization accuracy (and/or global

map quality). To make the algorithm differentiable we use

the reparameterization trick [37] to differentiate through

samples from the transition model; and we use spatial trans-

formers [29] for differentiable map transformations. The rest

of the operations of the algorithm, as presented, are already

differentiable. While not used in our experiments, differen-

tiable particle resampling could be incorporated from prior

work [34; 65]. Further, due to limited GPU memory, to make

use of the differentiable algorithm for learning our design

choices on the local map representation and the formulation

of the observation model are important.

Next we introduce each component of SLAM-net. Net-

work architecture details are in the Appendix.

3.2. Transition model

The transition model is a CNN that takes in the concate-

nated current and last observations, ot and ot−1, and out-

puts parameters of Gaussian mixture models with separate

learned mean and variance for the relative 2D pose and 1D

orientation. The transition model is pre-trained to maximize

the log-likelihood of true relative poses along the training

trajectories. It is then finetuned together with the rest of the

SLAM-net components optimizing for the end-objective.

3.3. Mapping model

The mapping model is a CNN with a pre-input perspective

transformation layer. The input is observation ot, the output

is local map mt. Local maps serve two purposes: to be fed

to the observation model and aid pose estimation by closing

loops; and to construct a global map for navigation.

Our local maps are N×N×Nch grids that capture infor-

mation about the area in front of the robot. In one configu-

ration local maps encode occupancy, i.e., the probability of

the area being occupied for the purpose of navigation. This

model is trained with a (per cell) classification loss using

ground-truth occupancy maps. In another configuration local

maps encode learned latent features that have no associated

meaning. This model is trained for the end-objective by

backpropagating through the observation model. In both

cases we found it useful to add an extra channel that encodes

the visibility of the captured area. For depth input this is

computed by a projection; for RGB input it is predicted by

the network, using projected depth for supervision.

3.4. Observation model

The observation model is the most critical component

of the architecture. It updates particle weights based on

how “compatible” the current local map would be with

past local maps if the particle trajectory was correct. In-

tuitively we need to measure whether local maps capture the

same area in a consistent manner. Formally we aim to esti-

mate a compatibility value proportional to the log-probability

log p(mt|m1:t−1, s
k
1:t).

We propose a discriminative observation model that com-

pares pairs of local maps with a learned CNN. The CNN

takes in a current local map mt and a past local map mτ con-

catenated, and outputs a compatibility value. Importantly,

the past local map is transformed to the viewpoint of the

current local map according to the relative pose in the par-

ticle trajectory (skt , s
k
τ). We use spatial transformers [29]

for this transformation. The overall compatibility is the sum

of pairwise compatibly values along the particle trajectory.

Compatibility values are estimated for all particles. Particle

weights are then updated by multiplying with the exponen-

tiated compatibility values, and they are normalized across

particles. CNN weights are shared.

	𝑎!

RGB(D) input

	𝑠!

pose

Weighted D*
planner

Subgoal
controller

robot
action

global grid map + pose planned path

Mapping

model

Transition

model

Observation

model

Differentiable SLAM-net

Figure 3: Visual navigation pipeline with the Differentiable SLAM-net, a path planner, and a motion controller.

For computational reasons, instead of comparing all local

map pairs, we only compare the most relevant pairs. During

training we pick the last 4–8 steps; during inference we

dynamically choose 8 steps based on the largest overlapping

view area (estimated using simple geometry).

3.5. Training and inference

Our training data consists of image-pose pair trajectories

(depth or RGB images, and 2D poses with 1D orientation);

and optionally ground-truth global occupancy maps for pre-

training the mapping model. The end-to-end training objec-

tive is the sum of Huber losses for the 2D pose error and 1D

orientation error.

We train in multiple stages. We first pre-train the transi-

tion model. We separately pre-train the observation model

together with the mapping model for the end-objective, but

in a low noise setting. That is, in place of the transition

model we use ground truth relative motion with small ad-

ditive Gaussian noise. Finally we combine all models and

finetune them together for the end-objective. During finetun-

ing we freeze the convolution layers and mixture head of the

transition model. When the mapping model is configured to

predict occupancy it is pre-trained separately and it is frozen

during finetuning.

An important challenge with training SLAM-net is the

computational and space complexity of backpropagation

through a large computation graph. To overcome this issue,

during training we use only short trajectories (4-8 steps),

and K=32 particles without resampling. During inference

we use the full length trajectories, and by default K=128
particles that are resampled in every step.

3.6. Implementation details

We implement SLAM-net in Tensorflow [1] based on

the open-source code of PF-net [34]. We adopt the training

strategy where the learning rate is decayed if the validation

error does not improve for 4 epochs. We perform 4 such

decay steps, after which training terminates, and the model

with the lowest validation error is stored. The batch size is 16

for end-to-end training, and 64 for pre-training the mapping

and transition models. We use Nvidia GeForce GTX 1080

GPUs for both training and inference.

For RGB input we configure local maps with 16 latent

feature channels that are not trained to predict occupancy.

For RGB-D input local maps are configured with both latent

channels and one channel that predicts occupancy. Further,

with RGB-D data we only use depth as input to SLAM-net.

4. Visual Navigation with SLAM-net

We propose a visual navigation pipeline (Fig. 3) that com-

bines SLAM-net with modules for path planning and motion

control. In the pipeline SLAM-net periodically predicts the

robot pose and a global occupancy grid map. The map and

pose are fed to a 2D path planner that plans a path to the

goal. The path is then tracked by a local controller the out-

puts robot actions.

Task specification. We follow the task specification of

the Habitat 2020 PointNav Challenge [32]. A robot navi-

gates to goals in previously unseen apartments using noisy

RGB(D) input. The goal is defined by coordinates relative to

the initial pose, but the robot location is unknown thereafter,

and discrete robot actions generate noisy motion. Navigation

is successful if the robot takes a dedicated stop action within

0.36 meters to the goal. Note that this success criteria places

high importance on pose estimation accuracy.

Path planner. The challenge of path planning in the

context of visual navigation is the imperfect partial knowl-

edge of the map and the robot pose. To address this we

adopt a weighted variant of the D* algorithm [39] with costs

that penalize moving near obstacles. In each step when the

map and pose are updated by the SLAM-net, the path is

replanned. For planning we convert the occupancy grid map

to an 8-connected grid where cells are assigned a cost. We

threshold the map (p>0.5 is an obstacle, p<=0.5 is free

space) and define cell costs based on the distance to the

nearest obstacle.

Additionally, we use a collision recovery mechanism.

Upon detecting a collision an obstacle is registered to the

map at the current estimated pose. The robot is then com-

manded to turn around (6 turn actions) and takes a step

back (1 forward action). Collisions are not directly observed.

We trigger collision recovery if the estimated pose does not

change more than 3cm following a forward action. A similar

mechanism was proposed in Chaplot et al. [10].

We also hard-coded an initial policy that makes the robot

turn around in the beginning of an episode. The initial policy

terminates once the estimated rotation exceeds 370◦.

Local controller. The planned path is tracked by a sim-

ple controller that chooses to turn or move forward aiming

for the furthest straight-line traversable point along the path.

The output of the controller are discrete actions.

5. Experiments

Our experiments focus on the following questions. 1) Can

SLAM-net learn localization in previously unseen indoor

scenes? How does it compare to existing methods? 2) Does

SLAM-net enable downstream robot navigation? 3) What

does SLAM-net learn and how do model components and

hyper parameters affect performance? 4) Do learned models

transfer to new datasets? 5) What are the limitations of

SLAM-net if applied, e.g., to autonomous driving data?

5.1. Datasets

Habitat. Our main experimental platform is the Habitat

simulator [52] configured with different real-world datasets:

Gibson [61], Replica [54], and Matterport [9]. The datasets

contain a large number of 3D scans of real world indoor

scenes, typically apartments. Habitat embeds the scenes

in an interactive physics simulator for robot navigation.

The simulator renders photorealistic but noisy first-person

RGB(D) observations and simulates realistic robot motion

dynamics. The camera has a horizontal FOV of 70◦ and a res-

olution of 640×360. For SLAM-net we downscale images

to 160×90. Depth values are in the range of 0.1 to 10 meters.

Unless stated otherwise, we use the Habitat Challenge 2020

configuration [32]: Gaussian noise for RGB images; the

Redwood noise model for depth images [13]; the Locobot

motion model for actuation noise [48]. To train and evaluate

SLAM methods we generate a fixed set of trajectories. For

navigation we let our method interact with the simulator.

Gibson data. Following Savva et al. [52] we use 72

scenes from the Gibson dataset for training and further split

the original validation set to 7 scenes for validation and 7

scenes for testing. We use 36k of the provided navigation

episodes for training (500 per scene). Given a start and goal

pose we generate a trajectory with a navigation policy that

switches between a shortest-path expert (30 steps) and ran-

dom actions (40 steps). For evaluation we generate 105 tra-

jectories (15 per test scene) using three different navigation

policies: the shortest-path expert (traj_expert); the shortest-

path expert mixed with random actions (traj_exp_rand);

and our final navigation pipeline (traj_nav).

Replica and Matterport data. We use the Matterport

and Replica datasets for transfer experiments without ad-

ditional training. We generate trajectories for evaluation

similarly to the Gibson data, using the shortest-path expert

policy. We use the original validation split with a total of 170

and 210 trajectories for Replica and Matterport respectively.

Dataset length[m] #frames #turns

Gibson (traj_expert) 7.4±3.8 51.1±24.7 22.6±11.6

Gibson (traj_exp_rand) 14.5±7.2 152.3±67.9 75.0±34.6

Gibson (traj_nav) 11.9±8.8 117.0±113.3 74.1±84.0

Matterport (traj_expert) 13.0±7.0 82.0±37.9 32.9±14.1

Replica (traj_expert) 8.0±2.8 53.9±17.7 23.5±9.17

KITTI-09 1680.3 1551

KITTI-10 910.48 1161

Table 1: Data statistics.

KITTI data. We conduct additional experiments with

the KITTI real world driving data [20]. We use the full

KITTI raw dataset for training, validation, and testing. Fol-

lowing the KITTI Odometry Split [20] the validation trajec-

tories are 06 and 07, and the testing trajectories are 09 and

10. Since the original depth information for KITTI dataset is

from sparse lidar, we use the completed depth data from the

[58] as ground-truth depth.

Statistics. Tab. 1 provides statistics for each set of evalu-

ation trajectories. We provide the mean and standard devia-

tion of the trajectory length, number of frames, and number

of turn actions (where applicable).

5.2. Baselines

Learned visual odometry. We use the transition model

of SLAM-net as a learned visual odometry model. The

model parameterizes a Gaussian mixture that predicts the rel-

ative motion between consecutive frames. When the model

is used for visual odometry we simply accumulate the mean

relative motion predictions.

ORB-SLAM. We adopt the popular ORB-SLAM [47;

46] as a classic baseline. The algorithm takes in RGB or

RGB-D images, constructs a keypoint-based sparse map, and

estimates a 6-DOF camera pose at every time-step. The algo-

rithm relies on tracking features between consecutive frames.

If there are not enough tracked key-points, the system is lost.

When this happens we initialize a new map and concatenate

it with the previous map based on relative motion estimated

from robot actions. With RGB-D input re-initialization takes

one time step, with RGB-only input it takes several steps.

We carefully tuned the hyperparameters of ORB-SLAM

based on the implementation and configuration of Mishkin

et al. [43], who tuned the algorithm for Habitat simulation

data, although without sensor and actuation noise. For the

main localization results in Tab. 2 we use the default velocity-

based motion model as in [47]. In Tab. 4 we replace the

motion model with relative motion estimated from actions,

which gave better results.

Blind baseline. This baseline ignores observation inputs,

and instead it accumulates the nominal robot motion based

on the ground-truth (but noisy) motion model. This serves

as a calibration of the performance of other methods.

Sensor RGBD RGBD RGBD RGB

Trajectory generator traj_expert traj_exp_rand traj_nav traj_expert

Metric runtime↓ SR↑ RMSE↓ SR↑ RMSE↓ SR↑ RMSE↓ SR↑ RMSE↓

SLAM-net (ours) 0.06s 83.8% 0.16m 62.9% 0.28m 77.1% 0.19m 54.3% 0.26m

Learned visual odometry 0.02s 60.0% 0.26m 24.8% 0.63m 30.5% 0.47m 28.6% 0.40m

ORB-SLAM [46] 0.08s 3.8% 1.39m 0.0% 3.59m 0.0% 3.54m X X

- no obs. noise 7.5% 1.14m 18.0% 0.36m

- no obs. and act. noise 18.0% 1.01m 20.4% 0.31m

- high frame rate 30.4% 0.58m X X

- ideal condition 86.0% 0.18m 43.5% 0.42m

Blind baseline 0.01s 16.2% 0.80m 1.0% 4.13m 3.8% 1.50m 16.2% 0.80m

Table 2: Main SLAM results.

Sensor RGBD RGB

Metric SR↑ SR↑

(1) All models (default) 77.1% 55.2%

(2) No learned transition model 43.8% 19.1%

(3) No observation model (VO) 30.5% 26.7%

(4) No joint training 66.7% 8.6%

(5) Occupancy map only 75.2% 23.8%

(6) Latent map only 70.5% 55.2%

(7) Occupancy + latent map 77.1% 44.8%

(8) Fixed comparisons (8) 44.8% 29.5%

(9) Dynamic comparisons (4) 73.3% 41.9%

(10) Dynamic comparisons (8) 77.1% 55.2%

(11) Dynamic comparisons (16) 77.1% 40.0%

(12) K=1 (VO) 30.5% 26.7%

(13) K=8 60.0% 35.2%

(14) K=32 (training) 72.4% 39.1%

(15) K=64 75.2% 46.7%

(16) K=128 (evaluation default) 77.1% 55.2%

(17) K=256 79.1% 44.8%

(18) K=512 82.9% 48.6%

Table 3: Ablation results.

6. Localization results

6.1. Main results for localization

Main localization results are summarized in Tab. 2. Vi-

sualizations and videos are in the supplementary material.

Tab. 2 reports success rate (SR) that measures the percent-

age of episodes where the final pose error is below 0.36

meters (to enable successful downstream navigation); and

root-mean-square-error (RMSE) which measures the abso-

lute trajectory error as defined in [26]. Estimated trajectories

are only aligned with the ground-truth at the beginning of

each episode. We also report runtimes, measuring the aver-

age processing time per frame (including loading the data,

RGBD sensor, traj_expert data).

SLAM-net learns successfully. We first observe that

SLAM-net successfully learned to localize in many episodes

despite the challenging data. Comparing columns we see

that an imperfect navigation policy can significantly increase

the difficulty of localization. Comparing SLAM-net across

sensor modalities we find that SLAM-net performs reason-

ably well with RGB-only input, and the depth sensor helps

substantially (54.3% vs. 83.8% success for traj_expert data).

SLAM-net outperforms its alternatives. We find that

SLAM-net outperforms both learned visual odometry and

the classic ORB-SLAM by a large margin across all datasets

and sensor modalities; and its runtime (on GPU) is slightly

better than ORB-SLAM. ORB-SLAM performs particularly

poorly. ORB-SLAM relies on temporal coherence between

frames to track features, which is challenging here due to the

combined effects of observation noise, sparse visual features,

rapid turns (approx. 90◦/s), low frame rate (approx. 3 fps),

and narrow field of view (HFOV=70◦). We find that ORB-

SLAM often fails to track features even with RGB-D input.

With RGB-only input it fails in nearly all steps, hence we

could not report a meaningful result. In contrast, SLAM-net

does not rely explicitly on feature tracking, and it learns

task-oriented models that can, e.g., learn more robust feature

extractors for the domain.

Why does ORB-SLAM fail? To better understand what

makes our data challenging for ORB-SLAM, we evaluate

it in a number of simplified settings for the traj_expert data.

We remove different types of challenges in rows of Tab. 2: no

observation noise, no action noise, high frame rate, and ideal

condition. The high frame rate setting reduces the action

step size in Habitat to achieve an equivalent 3 to ∼30 fps

increase in frame rate. The ideal condition setting removes

all the above challenges together.

Our results show that ORB-SLAM only works well in

ideal conditions, where its performance is comparable to

SLAM-net in the hardest conditions. If we remove only one

type of challenge the performance of ORB-SLAM remains

significantly worse. The RGB-D results indicate that low

frame rate has the largest impac. Results for RGB show a

similar trend; however, the presence of observation noise

Dataset Replica Matterport Replica Matterport

Sensor RGBD RGBD RGB RGB

Metric SR↑ RMSE↓ SR↑ RMSE↓ SR↑ RMSE↓ SR↑ RMSE↓

SLAM-net (ours) 78.8% 0.17m 49.5% 0.39m 45.3% 0.31m 23.3% 0.54m

Learned visual odometry 51.2% 0.31m 22.4% 0.75m 17.7% 0.67m 15.2% 0.93m

ORB-SLAM [46] 5.2% 1.46m 1.9% 2.90m X X X X

Blind baseline 7.7% 0.92m 5.7% 2.3m 7.7% 0.92m 5.7% 2.3m

Table 4: Transfer results.

Trajectory Kitti-09 Kitti-10

Metric RMSE↓ RMSE↓

SLAM-net (ours) 83.5m 15.8m

SLAM-net (best of 5) 56.9m 12.8m

Learned visual odometry 71.1m 73.2m

ORB-SLAM-RGB [47] 7.62m 8.68m

Table 5: KITTI results.

makes feature tracking fail completely (hence we could not

report meaningful results for this setting).

6.2. Ablation study

To better understand the workings of SLAM-net we per-

form a detailed ablation study. Results are summarized in

Tab. 3. The table reports success rates for the Gibson traj_nav

data, using SLAM-net in different conditions.

Which components are important? Line (2) of Tab. 3

replaces the learned transition model with a probabilistic

model that matches the motion dynamics prior (without con-

sidering an observation). Line (3) removes the observation

model and uses a single particle (equivalent to learned visual

odometry). Line (4) evaluates the pre-trained transition and

observation models without joint finetuning. We find that

both model components are important. Finetuning is useful;

and its benefits is much more significant for RGB input. Our

RGBD model uses predicted occupancy in its local maps,

which probably generalizes better to the noisier evaluation

setting than the RGB model that only uses learned latent

features.

Occupancy maps are useful for localization. Lines (5–

7) use different channels in learned local maps, pre-trained

occupancy predictions, learned latent features, or both. The

RGBD model is comparable in all settings. Adding latent

maps on top of occupancy only improves 1.9%, which indi-

cates that 2D occupancy is sufficient for localization. The

latent map configuration is 4.7% behind the occupancy maps,

showing that the model was able to learn useful map features

end-to-end, without any direct supervision.

We can learn better map features if occupancy pre-

diction is difficult. Comparing the RGB models we find

that the occupancy maps do not perform well here, but end-

to-end training allowed learning more effective features. The

difference to RGBD can be explained by the substantially

lower prediction accuracy of our occupancy map predictions.

Choosing what to compare matters. Lines (8-11) com-

pare strategies for choosing which map-pose pairs to feed

into our discriminative observation model. Line (8) uses

the last 8 steps of the particle trajectory, while lines (9-11)

chooses the most relevant past steps based on their estimated

overlapping view area. As expected, dynamically choosing

what to compare is useful. While one would expect more

comparisons to be useful, over 8 comparisons do not im-

prove performance. Since we trained with 8 comparisons,

this result indicates that our model overfits to this training

condition.

More particles at inference time are useful. Lines

(12–18) vary the number of particles at inference time. Sur-

prisingly, as little as 8 particles can already improve over the

visual odometry setting (line 12). Increasing the number of

particles helps, providing a trade-off between performance

and computation. The effect for RGB is less pronounced,

and improvement stops over 128 particles.

6.3. Transfer results

An important concern with learning based SLAM method

is potential overfitting to the training environments. We

take the SLAM-net models trained with the Gibson data,

and evaluate them for the Replica and Matterport datasets,

with no additional training or hyperparameter tuning. These

datasets contain higher quality scenes and cover a wide range

of smaller (Replica) and larger (Matterport) indoor environ-

ments. The robot and camera parameters remain the same.

Results are in Tab. 4. We observe strong performance for

SLAM-net across all datasets and sensor modalities. Com-

paring alternative methods we observe a similar trend as for

the Gibson data (traj_exp columns in Tab. 2). These results

on photorealistic data are promising for sim-to-real transfer

using real robot navigation data.

6.4. KITTI odometry results

To better understand the limitations of our approach we

apply it to the KITTI odometry data, which contains long

trajectories of autonomous driving. We do not expect a

SLAM component SR↑ SPL↑

Ground-truth 90.7% 0.56

SLAM-net (ours) 65.7% 0.38

Learned visual odometry 32.4% 0.19

Table 6: Navigation results.

strong performance. SLAM-net is designed to enable indoor

robot navigation which is reflected in a number of design

decisions. First, our local maps ignore information far from

the camera. Second, we do not have a dedicated loop closure

mechanism for large loops. Third, a key benefit of our

approach is the joint training of its components, however,

this requires large and diverse training data. The KITTI data

is relatively small for this purpose. Finally, images in the

KITTI data are of high quality for which existing SLAM

methods are expected to work well.

Our results are in Tab. 5. We report RMSE in meters after

trajectory alignment. SLAM-net results are averaged over

5 seeds. The ORB-SLAM results are for RGB only input

taken from [47]. As expected, SLAM-net does not perform

as well as ORB-SLAM; nevertheless, it learns a meaningful

model and outperforms learned visual odometry. Looking at

predicted trajectories we find that SLAM-net occasionally

fails to capture turns of the road (visualizations are in the

Appendix). One reason is that there are no particles near

the true trajectory, or the observation model gives a poor

prediction. The training data contains only a limited number

of turns, which makes learning from scratch difficult. Indeed

our model starts to overfit after a few epochs, suggesting that

more training data would improve the performance.

7. Navigation results

The motivation of our work is to enable visual robot nav-

igation in challenging realistic conditions. Our navigation

results are reported in Tab. 6 and Tab. 7, using RGB-D input.

Videos are in the supplementary material. We report two key

metrics following Anderson et al. [3]: success rates (SR) and

success weighted path length (SPL).

In Tab. 6 we experiment with our navigation pipeline

using different methods for localization and mapping, but

keeping the planner and controller modules fixed. Naviga-

tion performance is strong with a ground-truth localization

oracle, which validates our architecture and serves as an

upper-bound for SLAM methods. The navigation architec-

ture with SLAM-net significantly outperforms visual odom-

etry, achieving 65.7% success. Our navigation architecture

with visual odometry is conceptually similar to that of Active

Neural SLAM [10] and Occupancy Anticipation [51]. Our

results are consistent with that of Ramakrishnan et al. [51]

in matching conditions. We did not compare with the classic

ORB-SLAM method because of its poor performance in our

Rank Method SR↑ SPL↑

1 SLAM-net (ours) 64.5% 0.377

2 VO [59] 37.3% 0.266

3 OccupancyAnticipation [51] 29.0% 0.220

Table 7: Habitat 2020 PointNav Challenge leaderboard [25].

prior experiments.

Finally, we submitted our method to the Habitat Chal-

lenge 2020 evaluation server, which allows direct compar-

ison with various alternative methods. Tab. 7 shows the

top of the leaderboard for the PointNav task. SLAM-net

achieves 64.5% success, significantly improving over the

SOTA (VO [59], 37.3%). It also outperforms the challenge

winner (OccupancyAnticipation [51], 29.0%) which was

shown to be superior to Active Neural SLAM [10].

8. Conclusions

We introduced a learning-based differentiable SLAM ap-

proach with strong performance on challenging visual local-

ization data and on downstream robot navigation, achieving

SOTA in the Habitat 2020 PointNav task.

Together, our results provide new insights for understand-

ing the strengths of classic and learning based SLAM ap-

proaches in the context of visual navigation. Our findings par-

tially contradict the results of Mishkin et al. [43], who bench-

marked classic and learned SLAM for navigation. While

they found ORB-SLAM to be better than learning based

SLAM in the same Habitat simulator, they used a noise-free

setting and relative goals. As pointed out by Kadian et al.

[32], this setting is not realistic in various aspects. Indeed,

the public ORB-SLAM implementation of Mishkin et al.

[43] failed entirely in our more realistic setting; while our

learning-based approach achieved strong performance.

We believe that our work on differentiable SLAM may

lay foundation to a new class of methods that learn robust,

task-oriented features for SLAM. Future research may inves-

tigate alternative differentiable SLAM algorithms, e.g., that

build on an optimization-based method instead of particle

filtering. While our initial results are promising, future work

is needed to apply SLAM-net to real-world robot navigation.

A particularly interesting application would be learning to

relocalize with significant changes in the environment, a

setting known to be challenging for current algorithms.

Acknowledgement

We would like to thank Rico Jonschkowski for suggesting to

keep local maps and Gim Hee Lee for valuable feedback. This

research/project is supported in part by the National Research Foun-

dation, Singapore under its AI Singapore Program (AISG Award

No: AISG2-RP-2020-016) and by the National University of Sin-

gapore (AcRF grant R-252-000-A87-114).

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, et al. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. 4

[2] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and

J Zico Kolter. Differentiable MPC for end-to-end planning

and control. In Advances in Neural Information Processing

Systems, pages 8299–8310, 2018. 2

[3] Peter Anderson, Angel Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

et al. On evaluation of embodied navigation agents. arXiv

preprint arXiv:1807.06757, 2018. 2, 8

[4] Ali Azarbayejani and Alex P Pentland. Recursive estimation

of motion, structure, and focal length. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(6):562–575,

1995. 2

[5] Timothy D Barfoot. Online visual motion estimation using

fastslam with sift features. In 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 579–585.

IEEE, 2005. 2

[6] Mohak Bhardwaj, Byron Boots, and Mustafa Mukadam. Dif-

ferentiable gaussian process motion planning. In Interna-

tional Conference on Robotics and Automation (ICRA), pages

10598–10604, 2020. 2

[7] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan

Leutenegger, and Andrew J Davison. Codeslam—learning a

compact, optimisable representation for dense visual slam. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2560–2568, 2018. 2

[8] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Da-

vide Scaramuzza, José Neira, Ian Reid, and John J Leonard.

Past, present, and future of simultaneous localization and map-

ping: Toward the robust-perception age. IEEE Transactions

on Robotics, 32(6):1309–1332, 2016. 1

[9] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d

data in indoor environments. International Conference on 3D

Vision (3DV), 2017. MatterPort3D dataset license agreement

available at: http://kaldir.vc.in.tum.de/matterport/MP_TOS.

pdf. 5

[10] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Ab-

hinav Gupta, and Ruslan Salakhutdinov. Learning to explore

using active neural slam. In International Conference on

Learning Representations, 2020. 2, 4, 8, 13

[11] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav

Gupta, and Saurabh Gupta. Neural topological slam for visual

navigation. In Computer Vision and Pattern Recognition

(CVPR), pages 12875–12884, 2020. 2

[12] Changhao Chen, Bing Wang, Chris Xiaoxuan Lu, Niki

Trigoni, and Andrew Markham. A survey on deep learn-

ing for localization and mapping: Towards the age of spatial

machine intelligence. arXiv preprint arXiv:2006.12567, 2020.

1

[13] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust

reconstruction of indoor scenes. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2015. 5

[14] Javier Civera, Oscar G Grasa, Andrew J Davison, and JMM

Montiel. 1-point ransac for ekf-based structure from motion.

In 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 3498–3504. IEEE, 2009. 2

[15] Andrew J Davison. Real-time simultaneous localisation and

mapping with a single camera. In null, page 1403. IEEE,

2003. 2

[16] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An

introduction to sequential monte carlo methods. In Sequential

Monte Carlo methods in practice, pages 3–14. Springer, 2001.

3

[17] Sebastian East, Marco Gallieri, Jonathan Masci, Jan Kout-

nik, and Mark Cannon. Infinite-horizon differentiable model

predictive control. In International Conference on Learning

Representations, 2019. 2

[18] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and

Shimon Whiteson. TreeQN and ATreeC: Differentiable tree

planning for deep reinforcement learning. In International

Conference on Learning Representations, 2018. 2

[19] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel

Rendón-Mancha. Visual simultaneous localization and map-

ping: a survey. Artificial intelligence review, 43(1):55–81,

2015. 1

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012. 2, 5

[21] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Im-

proved techniques for grid mapping with rao-blackwellized

particle filters. IEEE transactions on Robotics, 23(1):34–46,

2007. 2

[22] Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen

Simonyan, Oriol Vinyals, Daan Wierstra, et al. Learning

to search with MCTSnets. In International Conference on

Machine Learning, 2018. 2

[23] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and planning

for visual navigation. arXiv preprint arXiv:1702.03920, 2017.

1, 2

http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf

[24] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter

Abbeel. Backprop KF: Learning discriminative determin-

istic state estimators. In Advances in Neural Information

Processing Systems, pages 4376–4384, 2016. 2

[25] Habitat. Leaderboard for the CVPR Habitat 2020 Point-

Nav challenge, 2020. URL https://evalai.cloudcv.org/web/

challenges/challenge-page/580/leaderboard/1631. Accessed:

2020 November 16. 2, 8

[26] Ankur Handa, Thomas Whelan, John McDonald, and An-

drew J Davison. A benchmark for rgb-d visual odometry,

3d reconstruction and slam. In International Conference on

Robotics and Automation (ICRA), pages 1524–1531, 2014. 6

[27] Jan Hartmann, Dariush Forouher, Marek Litza, Jan Helge

Kluessendorff, and Erik Maehle. Real-time visual slam using

fastslam and the microsoft kinect camera. In ROBOTIK 2012;

7th German Conference on Robotics, pages 1–6. VDE, 2012.

2

[28] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel

Andor. Real-time loop closure in 2d lidar slam. In 2016

IEEE International Conference on Robotics and Automation

(ICRA), pages 1271–1278. IEEE, 2016. 2

[29] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In Advances in neural infor-

mation processing systems, pages 2017–2025, 2015. 3, 12,

13

[30] Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull.

gradslam: Dense slam meets automatic differentiation. arXiv

preprint arXiv:1910.10672, 2019. 2

[31] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Dif-

ferentiable particle filters: End-to-end learning with algorith-

mic priors. Proceedings of Robotics: Science and Systems,

2018. 2

[32] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-

der Clegg, Erik Wijmans, Stefan Lee, Manolis Savva, Sonia

Chernova, and Dhruv Batra. Are We Making Real Progress

in Simulated Environments? Measuring the Sim2Real Gap in

Embodied Visual Navigation. In arXiv:1912.06321, 2019. 1,

4, 5, 8

[33] Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-net:

Deep learning for planning under partial observability. In

Advances in Neural Information Processing Systems, pages

4697–4707, 2017. 2

[34] Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter

networks with application to visual localization. In Proceed-

ings of the Conference on Robot Learning, pages 169–178,

2018. 1, 2, 3, 4

[35] Peter Karkus, Xiao Ma, David Hsu, Leslie Pack Kaelbling,

Wee Sun Lee, and Tomás Lozano-Pérez. Differentiable algo-

rithm networks for composable robot learning. In Robotics:

Science and Systems (RSS), 2019. 1, 2

[36] Peter Karkus, Anelia Angelova, Vincent Vanhoucke, and Rico

Jonschkowski. Differentiable mapping networks: Learning

structured map representations for sparse visual localization.

In International Conference on Robotics and Automation

(ICRA), 2020. 2

[37] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013. 3

[38] Georg Klein and David Murray. Parallel tracking and map-

ping for small ar workspaces. In 2007 6th IEEE and ACM

international symposium on mixed and augmented reality,

pages 225–234. IEEE, 2007. 2

[39] Sven Koenig and Maxim Likhachev. Fast replanning for nav-

igation in unknown terrain. IEEE Transactions on Robotics,

21(3):354–363, 2005. 4

[40] Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys. Rs-

slam: Ransac sampling for visual fastslam. In 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 1655–1660. IEEE, 2011. 2

[41] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu.

Undeepvo: Monocular visual odometry through unsupervised

deep learning. In 2018 IEEE international conference on

robotics and automation (ICRA), pages 7286–7291. IEEE,

2018. 2

[42] Xiao Ma, Peter Karkus, David Hsu, and Wee Sun Lee. Particle

filter recurrent neural networks. In AAAI Conference on

Artificial Intelligence, volume 34, pages 5101–5108, 2020. 2

[43] Dmytro Mishkin, Alexey Dosovitskiy, and Vladlen Koltun.

Benchmarking classic and learned navigation in complex 3d

environments. arXiv preprint arXiv:1901.10915, 2019. 1, 2,

5, 8

[44] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben

Wegbreit, et al. Fastslam: A factored solution to the simulta-

neous localization and mapping problem. AAAI Conference

on Artificial Intelligence, 593598, 2002. 1, 2, 3

[45] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben

Wegbreit, et al. Fastslam 2.0: An improved particle filtering

algorithm for simultaneous localization and mapping that

provably converges. In IJCAI, pages 1151–1156, 2003. 2, 3

[46] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-

source slam system for monocular, stereo, and rgb-d cameras.

IEEE Transactions on Robotics, 33(5):1255–1262, 2017. 2,

5, 6, 7

[47] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D

Tardos. Orb-slam: a versatile and accurate monocular slam

system. IEEE Transactions on Robotics, 31(5):1147–1163,

2015. 2, 5, 7, 8

[48] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,

Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav

Gupta. Pyrobot: An open-source robotics framework for re-

search and benchmarking. arXiv preprint arXiv:1906.08236,

2019. 5

https://evalai.cloudcv.org/web/challenges/challenge-page/580/leaderboard/1631
https://evalai.cloudcv.org/web/challenges/challenge-page/580/leaderboard/1631

[49] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value predic-

tion network. In Advances in Neural Information Processing

Systems, 2017. 2

[50] Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path

integral networks: End-to-end differentiable optimal control.

arXiv preprint arXiv:1706.09597, 2017. 2

[51] Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen Grau-

man. Occupancy anticipation for efficient exploration and

navigation. arXiv preprint arXiv:2008.09285, 2020. 2, 8

[52] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili

Zhao, Erik Wijmans, Bhavana Jain, et al. Habitat: A platform

for embodied AI research. In International Conference on

Computer Vision (ICCV), 2019. 2, 5

[53] Hauke Strasdat, José MM Montiel, and Andrew J Davison.

Visual slam: why filter? Image and Vision Computing, 30(2):

65–77, 2012. 2

[54] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik

Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl

Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian

Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kim-

berly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,

Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Ba-

tra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele,

Steven Lovegrove, and Richard Newcombe. The Replica

dataset: A digital replica of indoor spaces. arXiv preprint

arXiv:1906.05797, 2019. Replica dataset license agreement

available at: https://github.com/facebookresearch/Replica-

Dataset/blob/master/LICENSE. 5

[55] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and

Pieter Abbeel. Value iteration networks. In Advances in

Neural Information Processing Systems, 2016. 1, 2

[56] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle ad-

justment network. arXiv preprint arXiv:1806.04807, 2018.

2

[57] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir

Navab. Cnn-slam: Real-time dense monocular slam with

learned depth prediction. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6243–6252, 2017. 2

[58] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.

In 2017 international conference on 3D Vision (3DV), pages

11–20. IEEE, 2017. 5

[59] Unknown. VO. the method could not be identified at the time

of submission. Submission to the Habitat PointNav Challenge,

2020. 8

[60] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,

Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.

DD-PPO: Learning near-perfect pointgoal navigators from

2.5 billion frames. In International Conference on Learning

Representations, 2020. 2

[61] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Ji-

tendra Malik, and Silvio Savarese. Gibson env: real-world

perception for embodied agents. In Computer Vision and

Pattern Recognition (CVPR), 2018. Gibson dataset license

agreement available at: http://svl.stanford.edu/gibson2/assets/

GDS_agreement.pdf. 5

[62] Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain,

Mai Nishimura, and Asako Kanezaki. Path planning using

neural a* search. arXiv preprint arXiv:2009.07476, 2020. 2

[63] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and

Andrew J Davison. Scenecode: Monocular dense semantic

reconstruction using learned encoded scene representations.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 11776–11785, 2019. 2

[64] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1851–1858, 2017. 2

[65] Michael Zhu, Kevin Murphy, and Rico Jonschkowski.

Towards differentiable resampling. arXiv preprint

arXiv:2004.11938, 2020. 3

https://github.com/facebookresearch/Replica-Dataset/blob/master/LICENSE
https://github.com/facebookresearch/Replica-Dataset/blob/master/LICENSE
http://svl.stanford.edu/gibson2/assets/GDS_agreement.pdf
http://svl.stanford.edu/gibson2/assets/GDS_agreement.pdf

A. SLAM-net components

𝑜!

f!
"#$

C
o

o
rd

C
o

n
v

(8
, 5

, 1
, 4

)
C

o
o

rd
C

o
n

v
(8

, 5
, 1

, 2
)

C
o

o
rd

C
o

n
v

(1
6

, 5
, 1

, 1
)

C
o

o
rd

C
o

n
v

(3
2

, 3
, 1

, 1
)

𝑜!%&

Δ

C
o

o
rd

C
o

n
v

(3
2

, 3
, 1

)

La
ye

rn
o

rm

R
el

u

C
o

n
ca

t(
-1

)

M
a

xP
o

o
l(

3
, 2

)

La
ye

rn
o

rm

C
o

n
ca

t(
-1

)

C
o

o
rd

C
o

n
v

(1
2

8
, 3

, 1
)

R
el

u

R
el

u

C
o

o
rd

C
o

n
v

(6
4

, 3
, 1

)

R
el

u

+

C
o

o
rd

C
o

n
v

(1
2

8
, 3

, 1
)

R
el

u

C
o

o
rd

C
o

n
v

(6
4

, 3
, 1

)

R
el

u

+

C
o

o
rd

C
o

n
v

(6
4

, 4
, 2

)

R
el

u

C
o

o
rd

C
o

n
v

(1
6

, 4
, 2

)

F
la

tt
en

Transition model / visual torso

D
en

se
 (

1
0

2
4

)

R
el

u

f!
"#$

D
en

se
 (

1
2

8
)

R
el

u

D
en

se
 (

k)
D

en
se

 (
k)

D
en

se
 (

k)

𝜇

𝜎

log	𝛼

Transition model / GMM head

M
a

xP
o

o
l(

3
, 2

)

C
o

o
rd

C
o

n
v

(3
2

, 3
, 1

)

La
ye

rn
o

rm

R
el

u

La
ye

rn
o

rm

R
el

u

C
o

n
ca

t(
-1

)

C
o

o
rd

C
o

n
v

(N
'
(

, 3
, 1

)

P
er

sp
ec

ti
ve

T
ra

n
sf

o
rm

𝑜! 𝑚!

C
o

o
rd

C
o

n
v

(8
, 5

, 1
, 4

)
C

o
o

rd
C

o
n

v
(8

, 5
, 1

, 2
)

C
o

o
rd

C
o

n
v

(1
6

, 5
, 1

, 1
)

C
o

o
rd

C
o

n
v

(3
2

, 3
, 1

, 1
)

C
o

o
rd

C
o

n
v

(6
4

, 3
, 1

)

La
ye

rn
o

rm

R
el

u

+

Mapping model for latent local maps

C
o

o
rd

C
o

n
v

(6
4

, 5
, 1

)

M
a

xP
o

o
l(

3
, 2

)

C
o

o
rd

C
o

n
v

(3
2

, 3
, 1

)

La
ye

rn
o

rm

R
el

u

La
ye

rn
o

rm

R
el

u

M
a

xP
o

o
l(

3
, 2

)
A

vg
P

o
o

l(
3

, 2
)

C
o

n
ca

t(
-1

)

C
o

o
rd

C
o

n
v

(1
6

, 3
, 1

)

M
a

xP
o

o
l(

5
, 5

)
A

vg
P

o
o

l(
5

, 5
)

F
la

tt
en

D
en

se
 (

1
)

C
o

n
ca

t(
-1

)

T
ra

n
sf

o
rm

𝑠!%)
*

𝑚!%)

𝑠!
*

𝑚!

log	𝑤!,)
*

Observation model

Figure 4: Network architectures of SLAM-net components. The notation is as follows. Conv(f, k, s, d): convolutional

layer with f filters, k×k kernel, s×s strides, d×d dilation. CoordConv: convolutional layer that takes in extra channels

that encode constant pixel coordinates. MaxPool(k, s): max-pooling layer with k×k kernel and s×s strides. AvgPool(k,

s): average-pooling layer with k×k kernel and s×s strides. Dense(h) dense fully-connected layer with h output units.

Concat(-1): concatenate input images along their channel axis. Transform: spatial image transformation using a spatial

transformer network [29]. Given a relative pose and orientation it applies translational and rotational image transformations.

PerspectiveTransform: geometric perspective transformation to a top-down view, given a known camara matrix and a target

resolution. Inputs and outputs. ot: input image at time t, either RGB or depth. mt: local map at time t. skt : state s along

particle trajectory for particle k and time t. logwk
t,τ : estimated compatibility of map-pose pairs at time t and t−τ for particle k.

∆: difference of input image pair ot − ot−1. fvist: intermediate visual features in the transition model. µ: mean predictions for

a Gaussian mixture model (GMM) with k=3 components. σ: predicted standard deviations. logα: mixture log-probabilities.

A.1. Observation model

In the particle filter the observation model estimates the log-likelihood logwk
t , the probability of the current observation ot

given a particle trajectory sk1:t and past observations o1:t−1. The particle weight is multiplied with the estimated log-likelihood.

In SLAM-net we decompose this function. A mapping model first predicts a local map mt from ot. The observation model

than estimates the compatibility of mt with m1:t−1 and sk1:t, by summing pair-wise compatibility estimates.

logwk
t ≈

∑

τ∈T

logwk
t,τ (1)

logwk
t,τ = fobs

θ (mt, s
k
t ,mt−τ , s

k
t−τ) (2)

The network architecture of fobs

θ is shown in Fig. 4. Weights are shared across particles and time steps. The important

component of this model is the image transformation (Transform), that applies translational and rotations image transformations

to mt−τ given the relative poses defined by skt and skt−τ . We use spatial transformer networks [29] that implement these

transforms in a differentiable manner.

A.2. Mapping model

The mapping model component takes in the ot observation (160×90 RGB or depth image) and outputs a local map mt.

Local maps are 40×40×Nch grids, which can be understood as images with Nch channels. The local maps either encode

latent features (Nch = 16) or they are trained to predict the occupied and visible area. Each cell in the local map corresponds

to a 12×12cm area in front of the robot, i.e., the local map covers a 4.8×4.8m area.

The network architecture (configured for latent local maps) is shown in Fig. 4. The same network architecture is used

for RGB and depth input. We apply a fixed perspective transform to the first-person input images, transforming them into

160×160 top-down views that cover a 4.8×4.8m area. The perspective transformation assumes that the camera pitch and roll,

as well as the camera matrix are known.

When SLAM-net is configured with local maps that predict occupancy we use a similar architecture but with separately

learned weights. In case of RGB input our network architecture is the same as the mapping component in ANS [10], using

the same ResNet-18 conv-dense-deconv architecture. We freeze the first three convolutional layer of the ResNet to reduce

overfitting. In case of depth input our network architecture is similar to the one in Fig. 4, but it combines top-down image

features with first-person image features. When SLAM-net is configured with both occupancy and latent local maps we use

separate network components and concatenate the local map predictions along their last (channel) dimension.

For the KITTI experiments we use 40×40 local maps where cells are 70×70cm, i.e., a local map captures a 28×28m area.

We use an equivalent network architecture that is adapted to the wider input images.

A.3. Transition model

The transition model takes in the last two consecutive observations (ot, ot−1) and it outputs a distribution over the relative

motion components of the robot. It can also take in the last robot action at−1 when it is available.

Our transition model parameterizes a Gaussian mixture model (GMM) with k=3 mixture components, separately for each

coordinate (x, y, yaw) and each discrete robot action a. The network architecture is shown in Fig. 4. The model first extracts

visual features fvist from a concatenation of ot, ot−1 and their difference ∆=ot − ot−1. The visual features are then fed

to GMM heads for each combination of robot action a and x, y, yaw motion coordinates. Each GMM head uses the same

architecture with independent weights.

B. Additional figures

RGB input

Local map
(occupancy)

Global map &
trajectories

Enlarged view
(2m x 2m)

Depth input

RGB input

Local map
(occupancy)

Global map &
trajectories

Enlarged view
(2m x 2m)

Depth input

RGB input

Local map
(occupancy)

Global map &
trajectories

Enlarged view
(2m x 2m)

Depth input

Figure 5: SLAM-net with RGBD sensor. Trajectory sample from the Gibson data traj_exp_rand test set. In this configuration

SLAM-net local maps predict occupancy (third row). The enlarged view (bottom row) shows a 2×2m window of the predicted

global map. The true trajectory is in red; particle trajectories are in blue. The shade of blue indicate particle weights (darker

color means larger particle weight). Notice that particle trajectories maintain multi-modal trajectories. Low weight particles

are dropped after resampling. The figure is best viewed using zoom.

RGB input

Local map
(latent)

Global map &
trajectories

Enlarged view
(2m x 2m)

RGB input

Local map
(latent)

Global map &
trajectories

Enlarged view
(2m x 2m)

Figure 6: SLAM-net with RGB only sensor. Trajectory sample from the Gibson data traj_exp test set. In this configuration

SLAM-net local maps have 16 latent feature channels. We visualize normalized features of a single channel (second row).

The enlarged view (bottom row) shows a 2×2m window of the predicted global map. The true trajectory is in red; particle

trajectories are in blue. The shade of blue indicate particle weights (darker color means larger particle weight). Notice that

particle trajectories maintain multi-modal trajectories. Low weight particles are dropped after resampling. The figure is best

viewed using zoom.

Figure 7: KITTI trajectories. The figure shows SLAM-net predictions (before alignment) with different random seeds for

the Kitti-09 trajectory (top row) and the Kitti-10 trajectory (bottom row). The predicted trajectory is in blue, the true trajectory

is in red.

