
HyP-DESPOT: A Hybrid Parallel Algorithm for
Online Planning under Uncertainty

Panpan Cai∗, Yuanfu Luo, David Hsu and Wee Sun Lee

School of Computing, National University of Singapore, 117417 Singapore

Abstract

Robust planning under uncertainty is critical for robots
in uncertain, dynamic environments, but incurs high
computational cost. State-of-the-art online search al-
gorithms, such as DESPOT, have vastly improved the
computational efficiency of planning under uncertainty
and made it a valuable tool for robotics in practice. This
work takes one step further by leveraging both CPU and
GPU parallelization in order to achieve real-time online
planning performance for complex tasks with large state,
action, and observation spaces. Specifically, Hybrid Par-
allel DESPOT (HyP-DESPOT) is a massively parallel
online planning algorithm that integrates CPU and GPU
parallelism in a multi-level scheme. It performs parallel
DESPOT tree search by simultaneously traversing mul-
tiple independent paths using multi-core CPUs; it per-
forms parallel Monte-Carlo simulations at the leaf nodes
of the search tree using GPUs. HyP-DESPOT prov-
ably converges in finite time under moderate conditions
and guarantees near-optimality of the solution. Experi-
mental results show that HyP-DESPOT speeds up online
planning by up to several hundred times in several chal-
lenging robotic tasks in simulation, compared with the
original DESPOT algorithm. It also exhibits real-time
performance on a robot vehicle navigating among many
pedestrians.

Keywords: planning under uncertainty, real-time mo-
tion planning, parallel planning.

1 Introduction

As robots move towards uncontrolled natural human en-
vironments in our daily life—at home, at work, or on the
road—they face a plethora of uncertainties: imperfect
robot control, noisy sensors, and fast-changing environ-
ments. A key difficulty here is partial observability: the
system states are not directly revealed. A principled way

∗Corresponding author. Email: dcscaip@nus.edu.sg

of handling partial observability is to capture the uncer-
tainties in a belief, which is a probability distribution
over states, and reason about the effects of robot actions,
sensor observations, and change of the environment on
the belief. A planning algorithm looks ahead by search-
ing a belief tree, in which each tree node represents a be-
lief, and parent and child nodes are connected by action-
observation pairs to capture the change in the belief as a
result of robot actions and sensor observations (Fig. 1).
While the belief tree search is conceptually simple, it
is computationally intractable in the worst case, as the
number of states or the planning time horizon increases.

DESPOT (Ye et al., 2017) is a state-of-the-art be-
lief tree search algorithm for online planning under un-
certainty. To overcome the computational challenge,
DESPOT samples a set of “scenarios” and constructs
incrementally—via heuristic tree search and Monte
Carlo simulation—a sparse belief tree, which contains
only branches reachable under the sampled scenarios
(Fig. 1). The sparse tree is provably near-optimal (Ye
et al., 2017), and DESPOT has shown strong perfor-
mance in various robotic tasks, including autonomous
driving (Bai et al., 2015) and object manipulation (Ko-
val et al., 2016; Li et al., 2016).

We seek to scale up DESPOT further using paral-
lelization and enable robots to perform real-time plan-
ning under uncertainty for complex tasks with large
state, action, and observation spaces, e.g., autonomous
driving in a dense crowd of pedestrians. Specifically,
we propose Hybrid Parallel DESPOT (HyP-DESPOT),
which exploits both multi-core CPUs and GPUs to form
a multi-level parallelization scheme for DESPOT.

HyP-DESPOT uses multiple CPU threads to perform
parallel tree search by simultaneously traversing many
paths. The CPU threads provide the flexibility to handle
the irregularity of tree search for parallelization. The
key issue here is to distribute the threads over a diverse
set of tree paths, while preserving the optimality of the
search.

HyP-DESPOT uses GPUs to perform massively par-

1

DH
Int. J. Robotics Research, 2021

DH
APPEARED IN

G
P
U

...

C
P
U

𝑎1

𝑎1 𝑎1

𝑎2

𝑎2𝑎2

𝑧1 𝑧3 𝑧1 𝑧1

z1

𝑧1𝑧2 𝑧3

𝑧3 𝑧1 𝑧3

𝑎1 𝑎2 𝑎1 𝑎2

Figure 1: An overview of HyP-DESPOT. Each node of the belief tree (gray) represents a belief. A parent node and a
child node, with associated beliefs b and b′ respectively, are connected by an action-observation pair (a, z), indicating
that the belief transitions from b to b′, when a robot, with initial belief b, takes actions a and receives observation
z. The DESPOT tree (black) is a sparse subtree of the belief tree and contains only branches reachable under a set
of sampled scenarios (black dots). HyP-DESPOT integrates CPU and GPU parallelism: multi-threaded parallel tree
search (colored paths) in the CPUs, massively parallel Monte Carlo simulation at the leaf nodes in the GPUs, and
fine-grained GPU parallelization within a simulation step by factoring the system dynamics model (inset figure).

allel Monte Carlo simulations at the belief tree node
level, the action level, and the scenario level. Further,
a complex system often consists of multiple compo-
nents, e.g., multiple robots or humans in an interactive
or collaborative setting. HyP-DESPOT factors the dy-
namics model and the observation model of such a sys-
tem in order to extract additional opportunities for GPU
parallelization at a fine-grained level. Since the simu-
lations are independent, parallelization is conceptually
straightforward. However, GPUs suffer from high mem-
ory access latency and low single-thread arithmetic per-
formance. Parallel simulation and parallel tree search
must be integrated to generate sufficient parallel work-
load and benefit from large-scale GPU parallelization.
HyP-DESPOT deploys GPU simulations when the par-
allel workload is high and switches back to CPU simu-
lations on the fly when the parallel workload is low.

To our knowledge, HyP-DESPOT1 is the first mas-
sively parallel algorithm for online robot planning under
uncertainty. It provably converges in finite time under
moderate conditions and guarantees optimality or near-
optimality of the solution. Our experiments show that
HyP-DESPOT achieves significant speedup and better

1Code available at https://github.com/AdaCompNUS/HyP-
DESPOT

solutions, compared with the original DESPOT algo-
rithm, in various online planning tasks.

In the following, Section 2 provides the background
on planning under uncertainty and parallel planning.
Section 3 presents an overview of HyP-DESPOT. Sec-
tion 4 and 5 provide technical details on parallel tree
search and on parallel Monte Carlo simulation, respec-
tively. Section 6 presents experiments that evaluate the
key components and parameters of HyP-DESPOT. It
also reports the performance of HyP-DESPOT for real-
time control of an autonomous vehicles driving among
many pedestrians. Finally, we summarize the main re-
sults and point out directions of future work Section 7.

2 Background

2.1 Online Planning under Uncertainty

Consider a robot operating in a partially observable
stochastic environment. It has a state space S, an ac-
tion space A, and an observation space Z. We model
the robot’s stochastic dynamics with a transition proba-
bility function T (s, a, s′) = p(s′|s, a) for s, s′ ∈ S and
a ∈ A, and model noisy sensing with an observation
probability function O(s′, a, z) = p(z|a, s′), for s′ ∈ S,

2

https://github.com/AdaCompNUS/HyP-DESPOT
https://github.com/AdaCompNUS/HyP-DESPOT

a ∈ A, and z ∈ Z.
There are two general approaches to plan under uncer-

tainty: offline value iteration (e.g., (Pineau et al., 2003;
Smith and Simmons, 2004; Kurniawati et al., 2008;
Lim et al., 2011)) and online belief tree search (e.g.,
(Ross and Chaib-Draa, 2007; Silver and Veness, 2010;
Ye et al., 2017; He et al., 2011)). Offline planning rea-
son about all future contingencies in advance to achieve
faster execution time online. In contrast, online plan-
ning focuses on the contingency currently encountered
and scales-up to much more complex tasks.

For online planning, a robot computes an action at
each time step and interleaves planning and action ex-
ecution. To determine the best action at the current
belief b, we perform lookahead search in a belief tree
rooted at b (Fig. 1). The search optimizes the “value”
over all policies:

π∗(b) = arg max
π

Vπ(b). (1)

A policy π specifies the robot action at every belief, and
the value of π at a belief b, Vπ(b), is the expected total
discounted reward of executing the policy, with initial
belief b:

Vπ(b) = E

(∞∑
t=0

γtR(st, π(bt))

∣∣∣∣b0 = b

)
, (2)

where R(s, a) is a real-valued reward function designed
to capture desirable robot behaviors and γ is a discount
factor expressing the preference for immediate rewards
over future ones. The robot then executes the action
a = π∗(b) and receives an observation z. We update
the belief by incorporating the information in a and z
according to the Bayes’ rule:

b′(s′) = τ(b, a, z) = ηO(s′, a, z)
∑
s∈S

T (s, a, s′)b(s),

(3)
where η is a normalization constant. The new belief b′

then becomes the entry point of the planning cycle for
the next time step.

While belief tree search incurs a high computa-
tional cost, Monte Carlo sampling is a powerful idea
to make it efficient in practice. Early examples in-
clude the roll-out algorithm (Bertsekas and Castanon,
1998), sparse sampling (Kearns et al., 2002), hindsight
optimization (Chong et al., 2000), and AEMS (Ross
and Chaib-Draa, 2007). Two state-of-the-art belief tree
search algorithms, POMCP (Silver and Veness, 2010)
and DESPOT (Ye et al., 2017), both make use of Monte
Carlo sampling. POMCP performs Monte Carlo tree
search (MCTS) on the belief tree and uses the partially

observable UCT algorithm (PO-UCT) to trade-off ex-
ploration and exploitation. DESPOT performs anytime
heuristic search in a sparse belief tree conditioned on a
set of sampled scenarios. Both POMCP and DESPOT
solve moderately large planning tasks efficiently, while
DESPOT provides much better theoretical performance
guarantee in the worst case. The UCT search of POMCP
is sometimes overly greedy and suffers the worst-case
complexity of Ω(exp(exp(. . . exp(1) . . .)))2 to find a
sufficiently good action (Coquelin and Munos, 2007).
More importantly, DESPOT offers better opportunities
for parallelization, as it generates a large number of
Monte Carlo simulations, each corresponding to a sam-
pled scenario, that can be processed simultaneously,
rather than sequentially as POMCP does.

An alternative for planning under uncertainty is
to combine traditional deterministic motion planning
and stochastic optimal control. Earlier work handles
stochastic dynamics and noisy sensing by integrating lo-
cal control using linear-quadratic Gaussian (LQG) with
global planning using probabilistic roadmaps (PRM)
(Prentice and Roy, 2009) or rapid exploring random
trees (RRT) (Van Den Berg et al., 2011). These meth-
ods, however, are based on Gaussian noise assumptions.
In contrast, HyP-DESPOT does not assume the form of
uncertainty.

2.2 Parallel Planning

Modern computer hardware, such as multi-core CPUs
and GPUs, significantly boost the performance of plan-
ning algorithms and scale them up to complex robot
tasks.

Parallelization has been exploited extensively in clas-
sic motion planning on expensive subroutines such as
free space construction (Lozano-Prez and O’Donnell,
1991) and online collision checking (Bialkowski et al.,
2011), on the planning algorithm itself (Challou et al.,
1993; Plaku et al., 2005; Jacobs et al., 2013), and on
both planning and collision checking (Cai et al., 2018a).
These algorithms, however, do not deal with uncertainty,
which is an crucial challenge in real-world planning.

Planning under uncertainty is usually formulated as
a Markov decision process (MDP) if the system state is
fully observable, or as a partially observable Markov de-
cision process (POMDP) if the system state is not (Rus-
sell and Norvig, 2002). Parallelization has been ex-
ploited to speed up both MDP planning (Chaslot et al.,
2008; Rocki and Suda, 2011; Barriga et al., 2014; John-
son et al., 2016) and offline POMDP planning (Lee and

2Composition of D − 1 exponential functions for search depth
D.

3

Kim, 2016; Wray and Zilberstein, 2015).

Parallel MDP planning has focused on parallel Monte
Carlo tree search (MCTS). Three main schemes exist:
leaf parallelization (Cazenave and Jouandeau, 2007),
root parallelization (Cazenave and Jouandeau, 2007),
and tree parallelization (Chaslot et al., 2008). Leaf par-
allelization performs multiple roll-outs at a leaf node si-
multaneously. Root parallelization builds multiple trees
in parallel. Both schemes only use CPU threads but
can be combined to exploit massive GPU paralleliza-
tion. Block parallelization (Rocki and Suda, 2011) uses
GPUs to process roll-out requests from multiple trees.
Multi-block parallelization (Barriga et al., 2014) further
batch roll-outs for the children of leaf nodes. Unfor-
tunately, simply increasing the number of trees or the
number of roll-outs only offer limited benefits, because
the trees do not share information, which could result in
repeated efforts. Tree parallelization addresses this issue
by cooperatively searching a shared tree. The challenge
is to minimize the communication overheads for CPU
threads. HyP-DESPOT integrates existing schemes in
a novel form to achieve massively-parallel belief tree
search. It performs both tree parallelization and leaf par-
allelization in a CPU-GPU hybrid scheme.

Offline POMDP planning computes beforehand a pol-
icy for all contingencies, thus inducing a huge num-
ber of independent tasks for parallelization. gPOMDP
(Lee and Kim, 2016) parallelizes Monte Carlo value it-
eration (MCVI) (Lim et al., 2011) by batching Monte
Carlo simulations for multiple beliefs, action candidates,
and policy graph nodes in GPUs. A similar idea (Wray
and Zilberstein, 2015) is used to parallelize point-based
value iteration (PBVI) (Pineau et al., 2003).

Offline planning has almost unlimited computation
time to derive a solution. In contrast, online planning
is usually given a small fixed amount of time to choose
the best action in real-time. Parallelism is thus much
more important for online planning to scale-up to com-
plex tasks, but is rarely explored. Our work aims to fill
this gap.

This paper extends our earlier work on parallel be-
lief tree search (Cai et al., 2018b) with new algorithmic
components for optimistic trials (Section 4.4) and hy-
brid expansions (Section 5.4). We also provide new the-
oretical analysis on the convergence and optimality of
the algorithm (Theorem 1). Additional experiments are
conducted for the extended algorithm, including a real
robot experiment (Section 6.5).

3 Overview

HyP-DESPOT is a belief tree search algorithm that
leverages a CPU-GPU hybrid parallel model for online
planning under uncertainty. It parallelizes the DESPOT
algorithm (Ye et al., 2017) and retains its theoretical per-
formance guarantee. For completeness, we provide a
brief summary of the DESPOT algorithm (Section 3.1),
followed by the HyP-DESPOT algorithm (Section 3.2).

3.1 DESPOT

To overcome the computational challenge of online
planning under uncertainty, DESPOT samples a small
finite set of K scenarios as representatives of the future.
Each scenario, φ = (s0, ϕ1, ϕ2, ...), contains a state
s0 sampled from the initial belief and random numbers
ϕ1, ϕ2, ... that determinize the uncertain outcomes of fu-
ture actions and observations. DESPOT then applies a
deterministic simulative model g : S ×A×R→ S ×R
to perform Monte Carlo simulations:

(s′, z′) = g(s, a, ϕ) (4)

Simulating this model for an action sequence
(a1, a2, a3, ...) under a scenario (s0, ϕ1, ϕ2, ...) gener-
ates a simulation trajectory (s0, a1, s1, z1, a2, s2, z2, ...).
The collection of all trajectories form a DESPOT tree
(Fig. 1).

A DESPOT tree is a sparse belief tree conditioned
on the sampled scenarios. Each node of the tree con-
tains a set of scenarios, whose starting states form an
approximate representation of a belief. The tree starts
with an initial belief. It branches on all actions available,
but only on observations encountered under the sampled
scenarios.

The DESPOT algorithm performs anytime heuristic
search and constructs the tree incrementally by iterating
on three key steps as follows.

Forward search. DESPOT starts from the root node
b0 and searches a single path down to expand the tree.
At each node along the path, DESPOT chooses an action
branch and an observation branch optimistically accord-
ing to the heuristics defined by an upper bound u and a
lower bound value l.

Leaf node initialization. Upon reaching a leaf node
b, DESPOT fully expands it for one level using all ac-
tions and the observations encountered under the sam-
pled scenarios. It then initializes the upper and lower
bounds for the new nodes by performing a large number
of Monte Carlo simulations.

4

Backup. After creating the new nodes, the algorithm
traverses back to the root and updates the upper and
lower bounds for all nodes along the path, according to
the Bellman’s principle:

V (b) = max
a∈A

 1

|Φb|
∑

φ∈Φb

R(sφ, a) + γ
∑

z∈Zb,a

|Φb′ |
|Φb|

V (b′)

 (5)

where Φb is the set of scenarios visiting a node b, V
stands for both the upper bound and lower bound values,
and b′ = τ(b, a, z) represents a child node of b.

DESPOT repeats the three steps until the gap be-
tween the upper and lower bounds at the root, ε(b0), is
sufficiently small, or reaching a maximum time limit.
See (Ye et al., 2017) for details.

3.2 HyP-DESPOT

We want to parallelize all key steps of DESPOT to max-
imize performance gain. These steps, however, differ in
their structural properties for parallelization. The two
tree search steps, forward search and back-up, are irreg-
ular. In contrast, leaf node initialization, which consists
of many identical Monte Carlo simulations with differ-
ent initial states, is regular and “embarrassingly par-
allel”, meaning that the simulations can be easily di-
vided and dispatched to parallel threads with no data
sharing or inter-thread communication. HyP-DESPOT
leverages CPU and GPU parallelism to treat them sepa-
rately. It uses the more flexible CPU threads to handle
the two irregular tree search steps and uses massively
parallel GPU threads to handle the embarrassingly par-
allel Monte Carlo simulations at leaf nodes.

Compared with CPUs, GPUs suffer from high mem-
ory access latency and low single-thread arithmetic
performance. GPU main memory latency is usually
400–800 clock cycles (Luitjens, 2011), while CPU
main memory latency is much shorter at approximately
15 clock cycles (Intel Corporation, 2018). Double-
precision arithmetic instructions on GPUs are also sev-
eral times slower than those on CPUs (NVIDIA Corpo-
ration, 2017; Intel Corporation, 2018). CPU-GPU com-
munication also costs significant time. Effective GPU
parallelization requires massively parallel tasks to uti-
lize GPU threads fully and amortize latency penalties.

HyP-DESPOT integrates CPU-based parallel tree
search and GPU-based parallel Monte Carlo simulations
in a multi-level scheme (Fig. 1). Specifically, HyP-
DESPOT launches multiple CPU threads to traverse dif-
ferent paths simultaneously. It uses explorative heuris-
tics to distribute parallel threads across the tree. In the
meantime, it guarantees optimality by launching opti-
mistic trials periodically. Concurrent with the parallel

Algorithm 1: HyP-DESPOT
1 Sample K scenarios Φb0 from the current belief;
2 Create the root belief node b0;
3 Initialize u(b0) and l(b0) in the GPU (line 13&14);
4 ε(b0)← u(b0)− l(b0);
5 for N threads in parallel (CPU) do
6 while ε(b0) > 0 and elapsed time < T do
7 b← b0;
8 while b is not a leaf node do
9 b← SelectBestChild(b) (Eqn. 6-10);

10 end
11 for a ∈ A and φ ∈ Φb in parallel (GPU) do
12 (s′, z)← g(sφ, a, ϕφ);
13 l0(s′)← Rollout(s′) (Eqn. 14);
14 u0(s′)← DefaultUB(s′) (Eqn. 13);
15 end
16 Create new nodes for all a and z (Eqn. 12);
17 Backup (Eqn. 5) from b to the root node b0;
18 end
19 end
20 return a∗ = arg maxa∈A l(b0, a);

tree search, HyP-DESPOT relies on the GPU threads to
take over new leaf nodes, expand them, and initialize
their children through massively parallel Monte Carlo
simulations. To maximally exploit GPU paralleliza-
tion, HyP-DESPOT further factors the system dynam-
ics model and the observation model, then process the
factored elements in parallel within a single simulation
step. Finally, when the parallel workload becomes too
low at the tail of a search path, HyP-DESPOT switches
back to CPU simulation to avoid the overhead of GPU
computation.

Algorithm 1 summaries the basic version of HyP-
DESPOT. Details are described in the next two sections.

4 Optimal Parallel Belief Tree Search

The key to parallel belief tree search is the effective
distribution of CPU threads over different promising
paths. Simply deploying multiple CPU threads for
DESPOT tree search does not work well, as the origi-
nal DESPOT search heuristics are deterministic and all
search threads end up on the same tree path. To achieve
effective parallelization, HyP-DESPOT introduces ex-
ploration bonuses in search heuristics. When a CPU
thread traverses a node, HyP-DESPOT uses a modified
PO-UCT algorithm to select an action branch and uses a
virtual loss mechanism to select an observation branch.

5

4.1 Search Heuristics for DESPOT

We first describe the original heuristics used in
DESPOT. At each node b, DESPOT always traverses the
action branch with the maximum upper bound value:

a∗ = arg max
a∈A

u(b, a) (6)

and selects the observation branch leading to a child
node b′ with the maximum weighted excess uncertainty
(WEU):

z∗ = arg max
z∈Zb,a∗

E(b′) (7)

= arg max
z∈Zb,a∗

{
ε(b′)− |Φb′ |

K
· ξε(b0)

}
(8)

Here ε(b) = u(b)− l(b) represents the gap between the
upper and lower bounds in node b. Intuitively, the WEU
captures the amount of uncertainty remained in node b′

with reference to that in the root node b0. DESPOT ter-
minates a path if E becomes zero at the current node.
The constant ξ controls the target level of uncertainty.

4.2 Scenario-based PO-UCT for Action Selec-
tion

PO-UCT (Silver and Veness, 2010) is originally de-
signed to trade off exploitation and exploration for se-
rial belief tree search. It augments the estimated value
of an action branch with an exploration bonus captur-
ing the frequency of trying the action. The augmented
heuristics thus perform two tasks simultaneously: ex-
ploit the known promising actions, and explore less-
visited branches to improve the value estimation.

We reformulate PO-UCT to encourage parallel HyP-
DESPOT threads to explore different action branches.
The new algorithm, scenario-based PO-UCT, records a
scenario-wise visitation count for each node b, written
as |Φb|N(b), and for each action branch under b, written
as |Φb|N(b, a). Φb is the set of scenarios encountered at
b, and N(·) is the number of times that parallel threads
visit the node or the branch.

To select an action branch, the scenario-based PO-
UCT augments the estimated upper bound with an ex-
ploration bonus:

u+(b, a) = u(b, a) + ca

√
log(|Φb|N(b))

|Φb|N(b, a)
(9)

The bonus (the last item) decreases immediately when a
CPU thread visits action a under b. Later threads thus
tend to explore different, less-visited actions. The scal-
ing factor ca controls the desired level of exploration.

It can be tuned offline using hyper-parameter selection
algorithms like Bayesian optimization (Mockus, 1989).
We will also show in Section 6.4.5 that HyP-DESPOT is
robust to the choice of ca.

4.3 Virtual Loss for Observation Selection

Execution of an action a at node b can produce differ-
ent observations in different scenarios. HyP-DESPOT
traverses these observation branches in parallel using a
virtual loss mechanism.

The first thread visiting the branch (b, a) always se-
lects the maximum-WEU observation and traverses the
corresponding child node b′. In the meantime, it appends
a virtual loss ζ to the WEU value of b′:

E+(b′) = E(b′)− ζ(b′) (10)

Later threads visiting (b, a) are thus encouraged to tra-
verse other observations, until the former thread leaves
the branch and releases the virtual loss. As a simple im-
plementation, ζ(b′) can be set proportional to the ini-
tial gap of the root node, written as coε(b0). Again,
co controls the level of exploration among observation
branches and can be tuned offline.

4.4 Optimistic Trials and Optimality

Explorative heuristics are critical for distributing paral-
lel threads across the search tree, but may violate the
optimality of the original DESPOT algorithm. To retain
optimality, HyP-DESPOT launches an optimistic trial
for every P trials. The special trial applies the optimistic
DESPOT heuristics (Section 4.1), performing only ex-
ploitation along the traversed path, while other threads
still use the explorative heuristics (Section 4.2 and 4.3).
The following theorem states that the optimistic trials
guarantee the convergence and the optimality of HyP-
DESPOT:

Theorem 1. Suppose that ε0 is the target gap at the
root b0 to be achieved by the algorithm, and δ is the ap-
proximation error of the upper bound (Ye et al., 2017).
HyP-DESPOT will converge in finite time. The pol-
icy reported by HyP-DESPOT is (1) near-optimal when
ε0 > 0, and (2) optimal when ε0 = 0, δ = 0 and the
regularization constant λ > 0.

The convergence is not naturally guaranteed by ap-
plying optimistic DESPOT heuristics. An optimistic
trial may encounter inconsistent information produced
by other parallel threads updating the same nodes. The
behavior of the optimistic trial can thus differ from
DESPOT. Our proof in Appendix A shows that HyP-
DESPOT still converges despite this inconsistency of in-
formation.

6

CUDA

Stream 0

CPU

Parallel

DESPOT

tree

search

CUDA

Stream 𝑖

CUDA

Stream 𝑁

⋮ ⋮ ⋮

⋮ ⋮ ⋮⋮

⋮

Leaf

nodes

New

leaf nodes

𝑠1
𝑠2

𝑠|Φ𝑏|

⋮

𝑒1
𝑒2

𝑒𝑀

⋮

𝑠1
𝑠2

𝑠|Φ𝑏|

⋮

𝑒1
𝑒2

𝑒𝑀

⋮

𝑠1
𝑠2

𝑠|Φ𝑏|

⋮

𝑒1
𝑒2

𝑒𝑀

⋮

GPU Monte Carlo simulations

(𝑎) (𝑏) (𝑐) (𝑑)

⋱

𝑎1

𝑎|𝐴|

⋱

𝑎1

𝑎|𝐴|

⋱

𝑎1

𝑎|𝐴|

Figure 2: Multi-level parallelization scheme for Monte Carlo simulations in HyP-DESPOT. (a) Node-level paral-
lelism. (b) Action-level parallelism. (c) Scenario-level parallelism. (d) Fine-grained simulation-step level parallelism.

5 Parallel Monte Carlo Simulations

Concurrent with the parallel tree search, HyP-DESPOT
passes new leaf nodes to the GPU, expands them and
initializes their children by performing parallel Monte
Carlo simulations.

HyP-DESPOT expands multiple leaf nodes simulta-
neously. Each leaf node b is expanded by simulating all
possible actions in A using all scenarios in Φb in par-
allel for one step forward, using the deterministic step
function:

(s′, z) = g(s, a,φ), ∀φ ∈ Φb, a ∈ A (11)

Children belief nodes are created according to the new
observations {z}:

b′ = τ(b, a, z), a ∈ A, z ∈ Zb,a (12)

Scenarios are also updated using the new states {s′}
and split into children nodes under different observation
branches.

The algorithm then calculates the initial upper bound
and lower bound for all children nodes {b′} in paral-
lel. The upper bound u0 is calculated using a heuristic
function u(φ), and the lower bound l0 is calculated by
simulating a default policy π0 from the current depth
∆b′ :

u0(b′) =
1

|Φb′ |
∑

φ∈Φb′

u(φ) (13)

l0(b′) =
1

|Φb′ |
∑

φ∈Φb′

∞∑
t=∆b′

γt−∆b′R(stφ(π0), atπ0)

(14)

where stφ(π0) represents the state at time step t encoun-
tered under scenario φ after applying the sequence of
actions {atπ0} determined by the default policy π0. In
practice, we only perform the simulation until a maxi-
mum depth D, after which the future value is estimated
by a heuristic function l(φ).

HyP-DESPOT parallelizes all computations in Eqn.
(11), (13) and (14) in the GPU. Modern GPUs have
a hierarchical computational architecture, e.g., CUDA
(NVIDIA Corporation, 2017). GPU functions are
launched as “kernels” and are executed by a pool of par-
allel GPU threads. The thread pool consists of multi-
ple thread blocks further partitioned into “warps” of 32
threads executing in lock-step.

Following the CUDA architecture, we also paral-
lelize the Monte Carlo simulations in hierarchical lev-
els (Fig. 2), processing in parallel leaf nodes, actions,
scenarios, and elements within a single simulation step.
At the node level, HyP-DESPOT processes multiple
leaf nodes concurrently. In the action and the scenario
level, HyP-DESPOT performs Monte Carlo simulations
for different expansion actions and scenarios simultane-
ously. Finally, within a simulation step g, HyP-DESPOT
parallelizes the factored dynamics or observation mod-
els (if available) at a fine-grained level.

5.1 Node-Level Parallelism and Kernel Con-
currency

Fig. 2a illustrates the node-level parallelism. HyP-
DESPOT associates each CPU thread with a CUDA
stream (NVIDIA Corporation, 2017). When the
thread reaches a leaf node, it launches a GPU kernel,
MC simulation, to perform the computations defined in

7

NAV MARS Crowd-Drive
R

G

R

G

G

G

G

G

G

G

G

G

G

G

R

(a) (b) (c)

Figure 3: Evaluation tasks.

Eqn. (11), (13) and (14). The MC simulation ker-
nels launched by multiple CPU threads execute indepen-
dently and concurrently in the GPU.

5.2 Action-Level and Scenario-Level Paral-
lelism

The MC simulation kernel assigns simulations for inde-
pendent actions in A and scenarios in Φb to GPU thread
blocks and threads, respectively. For each leaf node b,
the kernel performs update, expansion, and roll-out in
parallel. It first gathers scenarios in b from its parent,
and updates them to the current search depth by apply-
ing the last action in the history. The leaf node is fully
expanded by considering all actions and simulating all
scenarios (Eqn. (11)), producing information for its chil-
dren nodes such as updated scenarios, rewards, and ob-
servations. Then, the kernel computes the upper bounds
(Eqn. (13)) and lower bounds by performing roll-outs
(Eqn. (14)) using the new scenarios. All computed in-
formation is finally returned to the corresponding CPU
thread to construct children nodes (Eqn. (12)). Once the
new nodes are ready, the CPU thread resumes back to
the tree search. Fig. 2b-2c summarize the action- and
scenario- level parallelism.

5.3 Parallelism within a Simulation Step

The dynamics or observation models in large-scale
problems often have multiple independent elements. For
example, an environment may have multiple robots or
objects moving independently. We can thus factor the
models in the step function g into fine-grained paral-
lel tasks (Fig. 2(d)) such as transitions of a vehicle and
pedestrians in Crowd-Drive. These factored tasks can
be heterogeneous to each other, causing serialized ex-
ecutions of GPU threads. To avoid serialization, HyP-

DESPOT assigns each task to an independent thread
warp. This fine-grained parallelism enables higher GPU
utilization. It also reduces the memory usages in GPU
blocks, as each block needs to process fewer scenarios.

5.4 Hybrid Expansion

Despite the hierarchical and fine-grained parallelization,
the benefit of GPU simulations vanishes with the search
depth. As scenarios diverge to different observation
branches along a search path, leaf nodes deep down the
tree may contain only few scenarios. In consequence,
GPU simulation kernels will be dominated by commu-
nication overheads. The problem becomes more promi-
nent when the simulation is computationally simple or
when a task has a large observation space that makes
scenarios diverge quickly.

HyP-DESPOT overcomes the vanishing benefit prob-
lem by switching back to CPU expansions when neces-
sary. When the number of scenarios in a node b falls be-
low a threshold (set to 2 empirically), the corresponding
thread copies GPU scenarios back to the host memory
and switches to CPU expansions for the rest of the trial.
CPU and GPU expansions in different trials are executed
simultaneously by parallel threads. The process is thus
referred to as “hybrid expansions”.

6 Experimental Results

We evaluated HyP-DESPOT on three robot planning
tasks under uncertainty (Fig. 3): navigation with a
partially known map (NAV), multi-agent rock sample
(MARS), and autonomous driving in a crowd (Crowd-
Drive). NAV has an enormous state space of size |S| =
169 × 2124 because the map is unknown. MARS has
625 actions, producing a huge tree to be searched. Fi-
nally, Crowd-Drive has an enormous observation space

8

with more than 10112 observations and a complex dy-
namics model, and we evaluated HyP-DESPOT both in
simulation and on a real robot vehicle.

We compare HyP-DESPOT and its variations with
the original DESPOT algorithm and GPU-DESPOT that
performs GPU parallelization only. Our results show
that HyP-DESPOT speeds up DESPOT by up to several
hundred times. GPU parallelization provides significant
performance gain and integration with CPU paralleliza-
tion offers additional benefits.

Results also suggest that algorithmic components
such as explorative heuristics, optimistic trials, and
hybrid expansions play significant roles. Explorative
heuristics improves both the parallelism of the search
and the quality of the solution. Optimistic trials not
only guarantee the convergence of HyP-DESPOT, but
also improve the practical performance. Hybrid expan-
sions can bring additional speedup when a problem has
simple roll-out policies or large observation spaces.

The performance benefits of HyP-DESPOT also de-
pend on the inherent parallelism that a task affords.
Our results suggest that generally, large state and action
spaces have a positive effect on parallelization, and large
observation space has a negative effect.

Details are presented in the subsections below.

6.1 Evaluation Tasks

6.1.1 Navigation with a Partially Known Map

A robot starts from a random position at the top border
of a 13 × 13 map, and travels to its goal in the bottom
via one of the two alternatively open gates on the mid-
dle wall (colored in blue in Fig. 3a). The map is only
partially-known to the robot. The known grids (black
grids in Fig. 3a) help the robot localize itself, but they
look identical to each other. Other grids (grey in Fig. 3a)
are unknown to the robot and have 0.1 probability of be-
ing occupied.

In each step, the robot can stay or move to its eight
neighboring grids. Moving of the robot can fail with
a small probability 0.03, while the observation of each
neighboring grid (OCCUPIED or FREE) can be wrong
with 0.03 probability. The robot receives a small mo-
tion cost (-0.1) for each step it moves. Staying still is
discouraged by a penalty of -0.2. If the robot hits an ob-
stacle, it receives a crash penalty (-1). When the goal is
reached, the robot receives a goal reward (+20), and the
world terminates.

NAV has an huge state space |S| = 169 × 2124. To
navigate successfully, the robot has to reason about both
localization and map uncertainties, and plan for a suffi-

0

100

200

300

400

500

600

Av
g.

 sp
ee

du
p

HyP-DESPOT
GPU-DESPOT
DESPOT

NAV

0

2

4

6

8

10

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd HyP-DESPOT

GPU-DESPOT
DESPOT

NAV

0

100

200

300

400

500

600

Av
g.

 sp
ee

du
p

HyP-DESPOT
GPU-DESPOT
DESPOT

MARS

0

10

20

30

40

50

60

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd HyP-DESPOT

GPU-DESPOT
DESPOT

MARS

0

10

20

30

40

Av
g.

 sp
ee

du
p

HyP-DESPOT
GPU-DESPOT
DESPOT

Crowd-Drive

6

5

4

3

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd HyP-DESPOT

GPU-DESPOT
DESPOT

Crowd-Drive

Figure 4: Performance of HyP-DESPOT and GPU-
DESPOT, compared with DESPOT in the tree evalua-
tion tasks: average speedup (left column) and average
total discounted reward (right column).

ciently long horizon to precisely pass the open gate and
reach the goal.

6.1.2 Multi-Agent Rock Sample

To test the performance of HyP-DESPOT on tasks
with many actions, we modify Rock Sample, a well-
established benchmark, to multi-agent Rock Sample
(Fig. 3b) which requires centralized planning. In multi-
agent Rock Sample(n,m), two robots cooperate to ex-
plore a n×nmap and samplem rocks distributed across
the map. The robots aim to sample as many GOOD rocks
as possible together and leave the map via the east bor-
der. The robots are mounted with noisy sensors to detect

9

whether a rock is GOOD or BAD, with accuracy decreas-
ing exponentially with the sensing distance. In each
step, each robot can either move to the four neighbor-
ing grids, or SENSE a specific rock. If a robot reaches a
rock, it can SAMPLE it, and receive a +10 reward if the
rock is GOOD, or a -10 reward if the rock is BAD. Fi-
nally, a robot receives a +10 reward upon reaching the
east border. The world terminates when both robots exit
the map.

We test HyP-DESPOT on multi-agent Rock Sam-
ple(20,20). It has a large action space containing 625
actions, producing a belief tree with a very high branch-
ing factor.

6.1.3 Autonomous Driving in a Crowd

We also evaluate HyP-DESPOT on a real-world robotic
task: an autonomous vehicle driving through a dense
crowd (Fig. 3c). We first conduct a quantitative study
in simulation (Fig. 3c), then provide qualitative demon-
strations on a real robot vehicle in Section 6.5.

The simulation is extended from the task in (Bai et al.,
2015). A vehicle drives among a crowd of pedestri-
ans (Fig. 3c), trying to reach its goal within 200 time
steps while taking care of 20 nearest pedestrians. To
achieve high fidelity simulation, we model both attentive
and distracted pedestrians in the environment. Atten-
tive pedestrians move according to a state-of-the-art mo-
tion model, PORCA (Luo et al., 2018), which assumes
that pedestrians cooperatively avoid collision with other
while optimizing its navigation efficiency. In contrast,
distracted pedestrians take straight-line paths towards
their goals and don’t cooperate with others. Gaussian
noise is added to pedestrians’ walking directions to sim-
ulate noisy transition and sensing. The simulated scene
contains roughly 30% of attentive pedestrians and 70%
of distracted pedestrians. The vehicle can observe posi-
tions and velocities of itself and all pedestrians around it,
but cannot directly know the goals of individual pedes-
trians, which has to be inferred from past observations.

We let the vehicle drive along a pre-planned path,
and control its speed online using HyP-DESPOT. In
each time step, the vehicle can choose to ACCELER-
ATE, DECELERATE, or MAINTAIN its speed, so that it
avoids collision with pedestrians and drives efficiently
and smoothly. However, both ACCELERATE and DECEL-
ERATE of the vehicle can fail with a small probability
(0.01). Rewards in this task follow the setting in (Bai
et al., 2015).

Crowd-Drive requires HyP-DESPOT to hedge against

0

100

200

300

400

Av
g.

 sp
ee

du
p

Both
PO-UCT only
V-Loss only
None
GPU only

0

5

10

15

20

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd

Both
PO-UCT only
V-Loss only
None
GPU only

Figure 5: The effect of disabling tree search heuristics
of HyP-DESPOT in NAV. “Both” indicates using both
the scenario-based PO-UCT and the virtual loss; “None”
means using neither of the them.

0.0 0.2 0.4 0.6 0.8
ca

0

2

4

6

8

10
HyP-DESPOT

Total discounted reward

0.0 0.2 0.4 0.6 0.8
ca

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 1e5
HyP-DESPOT

Tree size

Figure 6: The effect of changing the exploration factor,
ca, on the performance of HyP-DESPOT in NAV.

a variety of uncertainties: the vehicle’s noisy control,
hidden intentions of pedestrians, and their noisy transi-
tions.

6.2 Performance Evaluation

To study the computational efficiency, we measure the
speedup of HyP-DESPOT and GPU-DESPOT over the
serial DESPOT algorithm. The speedup measures the
ratio between the tree sizes been constructed within a
given planning time. If any of the algorithms over-
use the planning time (when expanding the root node),
we further normalize the tree sizes by the actual plan-
ning time. Our results (Fig. 4) show that HyP-DESPOT
achieved high speedup in all evaluation tasks. By con-
structing larger belief trees, HyP-DESPOT also gener-
ates higher quality solutions evaluated with the average
total discounted reward collected by the robot(s).

All experiments were conducted on a server with two
Intel(R) Xeon(R) Gold 6126 CPUs running at 2.60GHz,
a GeForce GTX 1080Ti GPU (11 GB VRAM), and 256
GB main memory. NAV and MARS are solved using 1
second planning time, as in standard online planning set-

10

Table 1: Detailed performance measurements of DESPOT (K=100), GPU-DESPOT (K=1000), and HyP-DESPOT
(K=1000) on Crowd-Drive. The efficiency of a drive is calculated by Tmax/T where Tmax is the time limit and T is
the traveling time to reach the goal. If the vehicle fails to reach the goal in a specific run, the efficiency is treated as
zero.

Total discounted reward Efficiency Collision rate # Decelerations

DESPOT -6.4 ± 0.006 0.0144 0.0 ± 0.0 12.7 ± 0.03
GPU-DESPOT -6.05 ± 0.083 1.848 2.4e-4 ± 5.2e-5 12.6 ± 0.05
HyP-DESPOT -5.83 ± 0.040 1.812 1.0e-4 ± 3.0e-5 12.7 ± 0.04

ting. For Crowd-Drive, we use 10 Hz control frequency
(0.1 second planning time).

In NAV, HyP-DESPOT and GPU-DESPOT achieve
416.3 and 142.6 times speedup over DESPOT, respec-
tively. As a result, HyP-DESPOT and GPU-DESPOT
achieve 292.2% and 150.3% higher total discounted re-
wards than DESPOT, respectively.

For MARS, HyP-DESPOT and GPU-DESPOT
achieve 403.2 and 119.2 times speedup over DESPOT,
and bring up to 220.1% and 72.3% of improvements on
the total discounted rewards, respectively.

The Crowd-Drive task affords a limited level of paral-
lelism, primarily because of the huge observation space,
Z > 10112, causing scenarios to diverge along the
search paths. Fig. 4 shows that pure GPU paralleliza-
tion still brought 23.2x speedup over DESPOT ben-
efiting from the fine-grained parallelism within each
simulation step. With additional CPU parallelization,
HyP-DESPOT achieved 30.5x speedup and significantly
higher rewards. Detailed measurements in Table 1 show
that HyP-DESPOT significantly improved the naviga-
tion efficiency from DESPOT. It also reduced the col-
lision rate from GPU-DESPOT, thus delivered safer
drives.

6.3 Benefits of Parallelization

In this section, we examine the benefit of three key com-
ponents in HyP-DESPOT that enables us to integrate
CPU and GPU parallelization: the explorative heuris-
tics, the optimistic trials, and the hybrid expansions. The
following results show that they are all critical for the ef-
ficiency of the algorithm.

6.3.1 Explorative Heuristics

We illustrate the importance of the explorative heuris-
tics using ablation analysis with the NAV task. Fig. 5
shows that launching multiple CPU threads without ex-
plorative heuristics (None) did not bring any speedup
over GPU-DESPOT (GPU) because the threads tend to
traverse identical paths. Enabling either the PO-UCT or

0

100

200

300

400

500

600

Av
g.

 sp
ee

du
p

Base
Base + switch
Opt

NAV

0

2

4

6

8

10

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd Base

Base + switch
Opt

NAV

0

100

200

300

400

500

600

Av
g.

 sp
ee

du
p

Base
Base + switch
Opt + switch

MARS

0

10

20

30

40

50

60

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd Base

Base + switch
Opt + switch

MARS

0

10

20

30

40

Av
g.

 sp
ee

du
p

Base + switch
Opt
Opt + switch

Crowd-Drive

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

Av
g.

 to
ta

l d
isc

ou
nt

ed
 re

wa
rd Base + switch

Opt
Opt + switch

Crowd-Drive

Figure 7: The effect of using or not using optimistic tri-
als (with opt or base flags) and hybrid expansions (with
or without the switch flag) on the performance of HyP-
DESPOT in the evaluation tasks.

the virtual loss (PO-UCT only and V-Loss only) brought
significant performance gain over GPU-DESPOT. When
both heuristics were functioning (Both), HyP-DESPOT
achieved the best performance.

11

We further test the robustness of HyP-DESPOT with
respect to the exploration factor ca in Eqn. 6. Fig. 6
shows the performance of HyP-DESPOT with different
ca applied to action branch selection. The results indi-
cate that HyP-DESPOT is robust to the value of ca and it
can be conveniently chosen for a range of similar tasks.

6.3.2 Optimistic Trials

In this section, we analyze the practical effect of opti-
mistic trials, beyond its contribution to the theoretical
guarantee. We first compare the performance of HyP-
DESPOT with and without optimistic trials. Then, we
conduct a fine-grained analysis by varying the period P
of launching optimistic trials.

Our results (Fig. 7) show that optimistic trials can im-
prove the solution quality without building larger trees.
This is because the optimistic trials better exploit exist-
ing information in the tree. HyP-DESPOT with opti-
mistic trials (with opt tags) generally has lower speedup
than variants without them (with base tags), but their
performance still match up with or exceed that of the
base variants. For example, in NAV, the opt variant gave
much lower speedup than the base variant, but achieved
similar performance. In Crowd-Drive, opt+switch had
similar speedup as base+switch, but improved the re-
wards significantly.

On the other hand, optimistic trials can also harm
the efficiency HyP-DESPOT due to reduced parallelism,
particularly when they are launched too frequently.
Fig. 8 illustrates the effect of using different periods P
(a low P means launching optimistic trials more fre-
quently). As an extreme case, when P is 0, parallel
trials are all optimistic, and they end up traversing the
same paths, making the search highly inefficient. The
choice of P is a trade-off between exploration and ex-
ploitation in the context of parallel tree search. Our anal-
yses (Fig. 8) indicate that P ≈ 5 is the optimal setting
for the NAV task.

6.3.3 Hybrid Expansions

The benefit of GPU expansions depends on the complex-
ity of the roll-outs and the size of the observation space.
When the roll-outs are simple, GPU computation time
will be dominated by thread synchronization and mem-
ory latency; When the observation space is large, scenar-
ios diverge fast along search paths, leaving most of leaf
nodes with a small scenario set to be parallelized. Our
evaluation tasks cover both cases. MARS has a very

simple default policy that blindly moves the robots to
the east border. In Crowd-Drive, the huge observation
space comprises the information of all involved agents.
Our results show that variants using hybrid expansions
(with switch tags) outperformed other variants signifi-
cantly in both problems (Fig. 7). In MARS, base +
switch achieved 14.9% higher speedup than base, im-
proving 7% on the rewards. In Crowd-Drive, opt +
switch improved the speedup by 62.3% and achieved the
best driving performance.

6.4 Effects of Key Parameters

The performance of HyP-DESPOT also relies on the
choice of parameters, such as the number of sampled
scenarios and the planning time, as well as the underly-
ing property of the task, such as the size of the action
space and the number of elements in the step function.
This section studies the effect of algorithm parameters
and task properties on two algorithms: HyP-DESPOT
and HyP-DESPOT-Base. The former uses optimistic tri-
als in the search while the latter does not. Hybrid expan-
sions are used when they are beneficial.

6.4.1 Number of Scenarios

Generally, problems with large state spaces can ben-
efit significantly from our parallelization. Large |S|-
problems require more scenarios to cover the state space
and representative outcomes of actions. These sce-
narios create many independent Monte Carlo simula-
tions, thus increase the parallelism of the algorithm. We
used NAV (Section 6.1.1), with |S| = 169 × 2124, as
an example to study this effect. We varied K from
100 to 5000 for HyP-DESPOT while keeping the plan-
ning time unchanged. Fig. 9 shows the high scalabil-
ity of HyP-DESPOT with respect to K. In contrast to
the decaying performance of DESPOT, the performance
of HyP-DESPOT increased when sampling more sce-
narios by offering higher speedup and searching larger
trees. The search depth of HyP-DESPOT, on the other
hand, decreased with K, indicating that it searches a
wider tree to produce robust decisions. Noticeably,
HyP-DESPOT with optimistic trials consistently outper-
formed HyP-DESPOT-Base with all K’s while always
building smaller trees.

6.4.2 Planning Time

Now we fix K in NAV and vary the planning time per
step T . We ran HyP-DESPOT for T = 0.25s, and set

12

0 5 10 15 20
P

0

100

200

300

400
Speedup

0 5 10 15 20
P

0

2

4

6

Total discounted reward

0 5 10 15 20
P

0

5×104

105

Tree size

0 5 10 15 20
P

0

5

10

15

Search depth

Figure 8: The effect of the period of launching optimistic trials, P , on the performance of HyP-DESPOT in NAV.

100 250 500 10002000300040005000
K

0

100

200

300

400

500 HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Speedup

100 250 500 10002000300040005000
K

2

0

2

4

6

8

10

12 HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Total discounted reward

100 250 500 10002000300040005000
K

0

25000

50000

75000

100000

125000

150000

175000
HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Tree size

100 250 500 10002000300040005000
K

0

10

20

30

40
HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Search depth

Figure 9: The effect of the number of scenarios, K, on the performance of HyP-DESPOT in NAV.

2 4 6 8 10
T(sec)

4

2

0

2

4

6

8

10
DESPOT
HyP-DESPOT-Base, T = 0.25s
HyP-DESPOT, T = 0.25s

Total discounted reward

2 4 6 8 10
T(sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 DESPOT
HyP-DESPOT-Base, T = 0.25s
HyP-DESPOT, T = 0.25s

Success rate

2 4 6 8 10
T(sec)

0

10000

20000

30000

40000 DESPOT
HyP-DESPOT-Base, T = 0.25s
HyP-DESPOT, T = 0.25s

Tree size

2 4 6 8 10
T(sec)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
DESPOT
HyP-DESPOT-Base, T = 0.25s
HyP-DESPOT, T = 0.25s

Search depth

Figure 10: The effect of the planning time T . In this experiment, DESPOT used a sequence of increasing planning
time and HyP-DESPOT used T = 0.25 sec in NAV. The success rate is defined as the proportion of trials where the
robot reaches the goal within 60 steps.

T = 1 ∼ 10s for DESPOT. Fig. 10 shows that DESPOT
takes much more time (> 40x) to reach a compara-
ble performance with HyP-DESPOT. HyP-DESPOT can
construct much larger and deeper trees, even when the
latter uses 10s planning time. The performance gap de-
creases when DESPOT uses more time, but the conver-
gence trend becomes slow after T = 10s. Here, HyP-
DESPOT-Base with no optimistic trials performed better
than HyP-DESPOT when T = 0.25s. This is because
0.25s is insufficient for obtaining reliable value estima-
tions. Thus it is more important to explore (using HyP-
DESPOT heuristics) than to exploit (using DESPOT

heuristics).

6.4.3 Size of the Action Space

HyP-DESPOT favors large action spaces, as they pro-
vides high parallelism to leverage. We evaluated HyP-
DESPOT on MARS (11,11), (15,15), and (20,20), with
|A| to be 256, 400, and 625, respectively. We fixed
K and T for all the tests. Fig. 11 shows that HyP-
DESPOT provided higher speedup when |A| increases,
and achieved much higher rewards than DESPOT for all
|A|’s.

13

(11,11)
|A|=256

(15,15)
|A|=400

(20,20)
|A|=625

0

200

400

600
HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Speedup over DESPOT

(11,11)
|A|=256

(15,15)
|A|=400

(20,20)
|A|=625

0

20

40

60

80 HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Total discounted reward

Figure 11: The effect of the action space size on
the performances of HyP-DESPOT, GPU-DESPOT, and
DESPOT. The experiment is conducted on three MARS
tasks with 256, 400, and 625 actions.

6 peds 12 peds 20 peds0

10

20

30

40

50 HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Speedup over DESPOT

6 peds 12 peds 20 peds
7

6

5

4

3

2
HyP-DESPOT
HyP-DESPOT-Base
GPU-DESPOT
DESPOT

Total discounted reward

Figure 12: The effect of factored elements in the simula-
tion model on the performances of HyP-DESPOT, GPU-
DESPOT, and DESPOT. The experiment is conducted
on three Crowd-Drive tasks considering 6, 12 and 20
nearby pedestrians.

0 5 10 15 20
threads

0

2

4

6

8

10
HyP-DESPOT

Total discounted reward

0 5 10 15 20
threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50
1e5

HyP-DESPOT

Tree size

Figure 13: The effect of the number of parallel CPU
threads on the performance of HyP-DESPOT in NAV.

6.4.4 Number of Elements in the Factored Model

Large observation spaces, Z, however, usually restrict
the speedup of HyP-DESPOT by diverging scenarios
into observation branches. Fortunately, many large-
Z problems can still leverage the fine-grained paral-
lelism within a simulation step. For example, our re-

sults in Crowd-Drive (Fig. 12) show that HyP-DESPOT
achieved higher speedups when simulating more pedes-
trians in planning. Consequently, HyP-DESPOT im-
proved driving performance significantly in all cases.

6.4.5 Number of CPU threads

Fig. 13 shows how the performance of HyP-DESPOT
scales with the numbers of CPU threads. In summary,
using more CPU threads for search increases the tree
size consistently, but the benefit diminishes once the
GPU cores are saturated. Further, larger search trees
do not necessarily guarantee higher rewards. The paral-
lel search threads are designed to be explorative. More
threads generally lead to wider trees, instead of deeper
ones. Thus too many CPU threads can harm the per-
formance for tasks such as NAV, which requires long-
horizon planning.

6.5 Experiments on an Autonomous Vehicle

We implemented HyP-DESPOT on a robot vehicle to
drive among pedestrians on a campus plaza (Fig. 14).
Sensors on the vehicle include two LIDARs, an inertia
measurement unit (IMU), and wheel encoders. We use
a SICK LMS151 LIDAR, mounted on top of the vehi-
cle, for pedestrian detection, and a SICK TiM551 LI-
DAR, mounted at the front, for localization. The maxi-
mum vehicle speed is 1 m/s. HyP-DESPOT runs on an
Ethernet-connected laptop with an Intel Core i7-4770R
CPU running at 3.90 GHz, a GeForce GTX 1050M GPU
(4 GB VRAM), and 16 GB main memory.

We apply a two-level approach to control the vehicle
(Bai et al., 2015). At the high level, we use the Hy-
brid A* algorithm (Stanley, 2006) to plan a path. At the
low level, we run HyP-DESPOT to compute the vehicle
speed along the planned path. The maximum planning
time is 0.3s. So the system re-plans both the path and
the speed at approximately 3 Hz.

Our experiments on a campus plaza show that the
autonomous vehicle can drive safely, efficiently, and
smoothly, among many pedestrians. Running on only
a middle-end laptop, HyP-DESPOT is able to handle 20
real pedestrians around the vehicle, enabling it to drive
in a much denser crowd than demonstrated in previous
work.

Fig. 14 shows the vehicle interacting with crowds of
pedestrians walking towards different goals. The driving
trajectories are generated by Hybrid A* according to the
free spaces around pedestrians. In the meantime, HyP-
DESPOT infers the intentions and the future motion of
pedestrians to plan for optimal speed control. For exam-
ple, in Fig. 14a, the vehicle encounters an approaching

14

Figure 14: The robot vehicle drives among pedestrians on a campus plaza. See also the accompanying video at
https://youtu.be/YaIpHGZOCsE.

pedestrian intending to cut through the vehicle’s planned
path. To avoid collisions, the vehicle decelerates and
gives way to the pedestrian. In another case (Fig. 14b),
a pedestrian walks in the opposite direction towards the
vehicle. The vehicle maneuvers to leverage the potential
free space on the right and maintains its driving speed.

7 Conclusion

This paper presents HyP-DESPOT, a massively par-
allel algorithm for online planning under uncertainty.
HyP-DESPOT performs parallel DESPOT tree search
in multi-core CPUs and massively parallel Monte Carlo
simulations in GPUs. To achieve effective paralleliza-
tion, it uses explorative heuristics to distribution par-
allel trials. The optimality of the search is preserved
by launching optimistic trials periodically. When pos-
sible, HyP-DESPOT factors a complex system model
and performs fine-grained parallelization to achieve fur-
ther performance gain. By integrating CPU and GPU
parallelism in a hybrid and multi-level scheme, HyP-
DESPOT achieves hundreds of times speedup over
DESPOT on several large-scale planning tasks under un-
certainty.

The parallelization scheme underlying HyP-DESPOT
can be easily generalized to other belief tree search al-
gorithms, e.g., POMCP. HyP-DESPOT can also be com-
bined with importance sampling (Luo et al., 2019) to
further improve performance. These are some directions
that we plan to explore in the near future.

Acknowledgement

This research is partially supported by the NUS AcRF
Tier 1 grant R-252-000-A87-114 and the ONR Global
and AFRL grant N62909-18-1-2023.

15

https://youtu.be/YaIpHGZOCsE

References

H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee. Intention-
aware online pomdp planning for autonomous driving
in a crowd. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 454–460,
May 2015.

N. A. Barriga, M. Stanescu, and M. Buro. Parallel uct
search on gpus. In 2014 IEEE Conference on Com-
putational Intelligence and Games, pages 1–7, Aug
2014.

D. P. Bertsekas and D. A. Castanon. Rollout algorithms
for stochastic scheduling problems. In Proceedings of
the 37th IEEE Conference on Decision and Control
(Cat. No.98CH36171), volume 2, pages 2143–2148
vol.2, Dec 1998.

J. Bialkowski, S. Karaman, and E. Frazzoli. Massively
parallelizing the rrt and the rrt. In 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pages 3513–3518, Sept 2011.

P. Cai, I. Chandrasekaran, J. Zheng, and Y. Cai. Auto-
matic Path Planning for Dual-Crane Lifting in Com-
plex Environments Using a Prioritized Multiobjective
PGA. IEEE Transactions on Industrial Informatics,
14(3):829–845, 2018a.

P. Cai, Y. Luo, D. Hsu, and W. S. Lee. Hyp-despot:
A hybrid parallel algorithm for online planning under
uncertainty. In Robotics: Science and Systems XIV,
2018b.

T. Cazenave and N. Jouandeau. On the parallelization
of uct. In Proceedings of the Computer Games Work-
shop, pages 93–101, 2007.

D. J. Challou, M. Gini, and V. Kumar. Parallel search
algorithms for robot motion planning. In IEEE In-
ternational Conference on Robotics and Automation,
pages 46–51. IEEE, 1993.

G. M. J. B. Chaslot, M. H. M. Winands, and H. J.
van den Herik. Parallel monte-carlo tree search. In
Computers and Games, pages 60–71, Berlin, Heidel-
berg, 2008.

E. Chong, R. Givan, and H. Soo Chang. A frame-
work for simulation-based network control via hind-
sight optimization. In Proceedings of the 39th IEEE
Conference on Decision and Control, volume 2, pages
1433 – 1438, Dec 2000.

P.-A. Coquelin and R. Munos. Bandit algorithms for tree
search. arXiv preprint cs/0703062, 2007.

R. He, E. Brunskill, and N. Roy. Efficient planning un-
der uncertainty with macro-actions. J. Artif. Int. Res.,
40(1):523–570, Jan. 2011.

Intel Corporation. Intel 64 and IA-32 architectures op-
timization reference manual, 2018. URL https:
//intel.ly/2lgN4rc.

S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas,
and N. M. Amato. A scalable distributed rrt for mo-
tion planning. In 2013 IEEE International Confer-
ence on Robotics and Automation, pages 5088–5095,
May 2013.

C. Johnson, L. Barford, S. M. Dascalu, and F. C. Har-
ris. CUDA implementation of computer go game tree
search. In Information Technology: New Genera-
tions: 13th International Conference on Information
Technology, pages 339–350, Cham, 2016.

M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sam-
pling algorithm for near-optimal planning in large
markov decision processes. Mach. Learn., 49(2-3):
193–208, Nov. 2002.

M. Koval, D. Hsu, N. Pollard, and S. Srinivasa. Config-
uration lattices for planar contact manipulation under
uncertainty. In Algorithmic Foundations of Robotics
XII—Proc. Int. Workshop on the Algorithmic Founda-
tions of Robotics (WAFR). 2016.

H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient
point-based pomdp planning by approximating opti-
mally reachable belief spaces. In In Proc. Robotics:
Science and Systems, 2008.

T. Lee and Y. J. Kim. Massively parallel motion plan-
ning algorithms under uncertainty using pomdp. Int.
J. Rob. Res., 35(8):928–942, July 2016.

J. K. Li, D. Hsu, and W. S. Lee. Act to see and see to
act: Pomdp planning for objects search in clutter. In
2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 5701–5707,
Oct 2016.

Z. Lim, L. Sun, and D. Hsu. Monte carlo value iteration
with macro-actions. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Sys-
tems 24, pages 1287–1295. 2011.

T. Lozano-Prez and P. A. O’Donnell. Parallel robot
motion planning. In IEEE International Conference
on Robotics and Automation, volume 2, pages 1000–
1007, April 1991.

16

https://intel.ly/2lgN4rc
https://intel.ly/2lgN4rc

J. Luitjens. GPU computing webinar, 2011. URL
https://bit.ly/2YUvefG.

Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and
D. Manocha. Porca: Modeling and planning for au-
tonomous driving among many pedestrians. IEEE
Robotics and Automation Letters, 3(4):3418–3425,
2018.

Y. Luo, H. Bai, D. Hsu, and W. S. Lee. Importance
sampling for online planning under uncertainty. The
International Journal of Robotics Research, 38(2-3):
162–181, 2019.

J. Mockus. Bayesian approach to global optimization:
theory and applications. Springer, 1989.

NVIDIA Corporation. NVIDIA CUDA C programming
guide, 2017. URL https://bit.ly/1IyiYCS.
Version 8.0.

J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for pomdps. In Pro-
ceedings of the 18th International Joint Conference
on Artificial Intelligence, pages 1025–1030, 2003.

E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E.
Kavraki. Sampling-based roadmap of trees for paral-
lel motion planning. IEEE Transactions on Robotics,
21(4):597–608, 2005.

S. Prentice and N. Roy. The belief roadmap: Efficient
planning in belief space by factoring the covariance.
The International Journal of Robotics Research, 28
(11-12):1448–1465, 2009.

K. Rocki and R. Suda. Large-scale parallel monte carlo
tree search on gpu. In 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Work-
shops and Phd Forum, pages 2034–2037, May 2011.

S. Ross and B. Chaib-Draa. Aems: An anytime on-
line search algorithm for approximate policy refine-
ment in large pomdps. In Proceedings of the 20th In-
ternational Joint Conference on Artifical Intelligence,
pages 2592–2598, 2007.

S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach (2nd Edition). Prentice Hall series
in artificial intelligence. Prentice Hall, 2002.

D. Silver and J. Veness. Monte-carlo planning in large
pomdps. In J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems 23, pages
2164–2172. 2010.

T. Smith and R. Simmons. Heuristic search value itera-
tion for pomdps. In Proceedings of the 20th Confer-
ence on Uncertainty in Artificial Intelligence, pages
520–527, 2004.

T. S. Stanley. The robot that won the darpa grand chal-
lenge: research articles. Journal Robotics System, 23
(9):661–692, 2006.

J. Van Den Berg, P. Abbeel, and K. Goldberg. Lqg-
mp: Optimized path planning for robots with motion
uncertainty and imperfect state information. The In-
ternational Journal of Robotics Research, 30(7):895–
913, 2011.

K. H. Wray and S. Zilberstein. A parallel point-based
pomdp algorithm leveraging gpus. In AAAI Fall Sym-
posium on Sequential Decision Making for Intelligent
Agents (SDMIA), pages 95–96, 2015.

N. Ye, A. Somani, D. Hsu, and W. S. Lee. Despot: On-
line pomdp planning with regularization. Journal of
Artificial Intelligence Research, 58:231–266, 2017.

17

https://bit.ly/2YUvefG
https://bit.ly/1IyiYCS

Appendices
A Convergence Proof of HyP-

DESPOT

A.1 Definitions

Definition 1 (HyP-DESPOT tree). The belief tree that
HyP-DESPOT constructed is called a “HyP-DESPOT
tree”, denoted asH.

Definition 2 (Consistency of a HyP-DESPOT tree). A
HyP-DESPOT tree H is called “consistent” if for all
node b inH, the upper bound value and the lower bound
value satisfy the Bellman’s equation:

V (b) = max
a∈A

 1

|Φb|
∑

φ∈Φb

R(sφ, a) + γ
∑

z∈Zb,a

|Φb′ |
|Φb|

V (b′)

 (15)

where Φb is the set of scenarios visiting a node b, V
stands for both the upper bound and lower bound val-
ues, and b′ = τ(b, a, z) represents a child node of b.

Definition 3 (Optimistic trial). An “optimistic trial” is
a trial launched every Pth exploration trials that uses
the DESPOT heuristics described in (Ye et al., 2017)
rather that the HyP-DESPOT heuristics described in
Section 4.2 and 4.3. For the simplicity of notations, we
let P = N in the proof. Other choices of P work simi-
larly.

A.2 Proof

Lemma 2. The duration for an exploration trial ψ is
bounded by a constant δT .

Proof. If only a single thread is searching the tree, the
duration will be bounded by Dmax{δTe, δTf , δTb},
where D is the maximum search depth of the tree, δTe,
δTf , and δTb are the maximum duration for expanding a
node, forward traversing a node, and performing backup
at a node, respectively.

Now suppose that N threads are simultaneously
traversing the tree. We consider one of theN threads, ψ.
For an arbitrary node b along its traversed path, the time
spent on visiting b path can only be increased by wait-
ing for other threads traversing, expanding or backing-
up the same node. Note that there are at most N − 1
threads blocking the ψ at b. Thus the duration for ψ
visiting node b is bounded by N max{δTe, δTf , δTb}.
Thus, the total exploration time is bounded by δT =
DN max{δTe, δTf , δTb}.

Lemma 3. If a HyP-DESPOT tree H is inconsistent at
time t, a working trial (a trial that is currently not vis-
iting the root node) have expanded at least one node
within duration [t− δT, t]

Proof. New information in the tree can only be created
by expanding a new node. Additionally, after each trial
finishes the backup step and returns to the root, informa-
tion along the path will be consistent again. All working
trials at time t were started within [t − δT, t] (Lemma
2). If none of them had expanded a single node, infor-
mation in the tree should be consistent, a contradiction.
Thus we conclude that a working trial should have ex-
panded one node within duration [t− δT, t].

Lemma 4. Consider an optimistic trial ψ̃. Denote as
t0 the time when ψ̃ started from the root of the tree. The
algorithm either has expanded or closed a gap of a node
during [t0 − δT, t0], or will expand or close a gap of a
node within [t0, t0 + δT].

Proof. Additionally denote the time point when ψ̃ reach
a leaf node of the HyP-DESPOT tree as tn. There exist
only three possible cases:

1. The HyP-DESPOT tree at time step t0 is inconsis-
tent;

2. The HyP-DESPOT tree at time step t0 is consistent,
but it has been updated during [t0, tn];

3. The HyP-DESPOT tree at time step t0 is consistent,
and it has not been updated during [t0, tn];

For case (1), since the tree is not consistent, by apply-
ing Lemma 3, we conclude that a node should have been
expanded during [t0 − δT, t0].

For case (2), the tree has been updated during [t0, tn],
meaning that at least a node has been expanded during
[t0, tn] ∈ [t0, t0 + δT].

Lastly, for case (3), the HyP-DESPOT tree should al-
ways be consistent during the duration [t0, tn]. There-
fore, trial ψ̃ behaves exactly like in the serial DESPOT
algorithm, and Theorem 4.1-4.2 in (Ye et al., 2017) ap-
plies, implying that ψ̃ will at least expand one node or
close the gap of one node along the current path (which
happens during [t0, t0 + δT]).

A.2.1 Proof of Theorem 1

Proof. We first show that HyP-DESOPT with N paral-
lel threads expands or closes the gap of at least one node
after every δT ′, where δT ′ is some fix amount of time.
Note that the difference between the starting time of an
optimistic trial ψ̃ and its previous optimistic trial ψ̃′ is at

18

most NδT . Applying Lemma 4, HyP-DESPOT should
expand or close the gap of at least one node for at least
every δT ′ = (N + 2)δT time duration. Thus, the proof
of Theorem 4.2 in (Ye et al., 2017) and the conclusion
apply here, meaning that HyP-DESPOT will expand all
useful belief nodes and terminate in finite time. Upon
termination, HyP-DESPOT constructs the full DESPOT
tree, achieving near-optimal or optimal policy in case
(1) and (2), respectively. The same regret bound given
in Theorem 3.2 for DESPOT (Ye et al., 2017) holds
here.

19

	Introduction
	Background
	Online Planning under Uncertainty
	Parallel Planning

	Overview
	DESPOT
	HyP-DESPOT

	Optimal Parallel Belief Tree Search
	Search Heuristics for DESPOT
	Scenario-based PO-UCT for Action Selection
	Virtual Loss for Observation Selection
	Optimistic Trials and Optimality

	Parallel Monte Carlo Simulations
	Node-Level Parallelism and Kernel Concurrency
	Action-Level and Scenario-Level Parallelism
	Parallelism within a Simulation Step
	Hybrid Expansion

	Experimental Results
	Evaluation Tasks
	Navigation with a Partially Known Map
	Multi-Agent Rock Sample
	Autonomous Driving in a Crowd

	Performance Evaluation
	Benefits of Parallelization
	Explorative Heuristics
	Optimistic Trials
	Hybrid Expansions

	Effects of Key Parameters
	Number of Scenarios
	Planning Time
	Size of the Action Space
	Number of Elements in the Factored Model
	Number of CPU threads

	Experiments on an Autonomous Vehicle

	Conclusion
	Appendices
	Convergence Proof of HyP-DESPOT
	Definitions
	Proof
	Proof of Theorem 1

