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Abstract— Autonomous urban driving among human-driven
cars requires a holistic understanding of road rules, short-
term driver intents and long-term driving styles. This is a
challenging task given the stochastic intents and driving styles of
the road users. In addition, dynamically changing environments
such as road intersections and traffic signals further increase
the complexity. This paper presents an interactive behavior
planning algorithm for adversarial scenarios in autonomous
urban driving applications. Specifically, we propose a road
context, driver intent, and driving style aware planner which
infers beliefs over the latent states of surrounding exo-vehicles
and uses a specialized Partially Observable Markov Decision
Process to provide risk-averse decisions. We validate our
proposed interactive behavior planner in simulation as well
as on a full-size self-driving car. Our experimental results show
that our algorithm enables safe and time-efficient autonomous
driving even in adversarial scenarios.

I. INTRODUCTION

Autonomous urban driving has been gaining popularity
in recent years. A majority of research in this domain has
an underlying assumption of exo-vehicles being driven by
reasonably rational drivers. In this paper, we specifically
focus on the adversarial scenarios for autonomous urban
driving which are caused by irrational drivers. However, our
proposed approach is applicable to complex driving scenarios
with a combination of rational and irrational drivers. We
achieve this with a holistic analysis of short-term driver
intents and their long-term driving styles with respect to the
contextual road rules for time-efficient and safe driving.

For example, consider the scenario that the ego-vehicle
is driving on a street with two lanes and an exo-vehicle is
driving in front. If the exo-vehicle intents to keep lane, the
ego-vehicle can overtake by changing to the adjacent lane for
efficiency. However, considering the intent alone sometimes
leads the ego-vehicle to perform naive actions resulting in
unforeseen outcomes. In addition to the driver intent, the ego-
vehicle also needs to consider the driving style of the exo-
vehicle. If the driving style of the exo-vehicle is aggressive
steering, the ego-vehicle needs to keep a safe distance and
change lane only when there is enough space in the lateral
direction. Specifically, the intents of the exo-vehicles help the
ego-vehicle anticipate their future actions so that it can make
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time efficient decisions. Whereas, the driving styles help the
ego-vehicle to stay at a safe distance from dangerous drivers.

The driver intents and driving styles of exo-vehicles are
unfortunately, unknown to the ego-vehicle and need to be
inferred. We infer the probability distributions over them for
surrounding exo-vehicles using recurrent neural networks,
based on their states and the road contextual information.
The road context such as lane directions and distance to lane
center can potentially help narrow down the space of possible
driver intents and driving styles and in addition, speed up the
planning process by filtering out invalid actions [1].

We propose, CID, Context, Intent, and Driving style aware
planner which uses a Partially Observable Markov Decision
Process (POMDP) framework to encode intents and driving
styles as the hidden states, and simulate the possible future
trajectories of neighboring exo-vehicles using the road con-
text. We solve the POMDP using a risk-averse planner, IS-
DESPOT [2], to get the optimal action for the ego-vehicle.
IS-DESPOT is a state-of-the-art online POMDP solver which
applies importance sampling [3] to handle rare but critical
events. We designed an importance function based on the
driving styles, to handle collisions which are rare but critical
events in autonomous driving. Our contributions in this paper
are three folds: (a) an inference module for driving style
analysis, (b) CID, an interactive behavior planner which
integrates intent and driving style inferences with respect to
road contextual information, (c) validation of our proposed
CID planner using adversarial driving scenarios in simulation
and on real-world data for qualitative analysis. We also
validated our planner by comparing it to important baselines
for quantitative analysis. Experimental results show that our
planner can significantly outperform the baselines in terms
of safety, especially for the adversarial scenarios, while
achieving the same level of efficiency.

II. RELATED WORK
A. Driver Intent and Driving Style Inference

Driver intent and driving style inference has been stud-
ied intensively but independently. In [4], speed and lateral
position changes are used for driving style detection. The
work in [5] evaluates the Euclidean norm on accelerometer
data and uses the deviations from the average of the norm to
classify the driving styles using fuzzy logic. DrivingSense [6]
classifies dangerous driving style based on smartphone auto-
calibration. The work in [7] uses linear regression to map a
selected set of features to driving styles. These approaches
normally divide driving styles into aggressive driving, nor-
mal driving, etc.. Our approach further divides them into
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longitudinal and lateral styles to improve planning. A group
of approaches [8], [9], [10] use HMMs or SVMs to predict
vehicle’s intents. Another group uses neural networks for
intent prediction [11], [12], [13]. These approaches, however,
require a huge amount of data for learning a range of
intents. In contrast to the existing work, we leverage the road
contexts for driver intent and driving style inferences and
combine their outcome to obtain informative observations
(e.g. right lane change with aggressive driving style) for
interactive planning.

B. Planning for Autonomous Driving

Driver intents and driving styles have been modelled inde-
pendently for planning under uncertainty. For example, [14],
[15], [16], [17], [18], [19] have modelled intents. MPDM
[14] evaluates a fixed set of policies on the trajectories
rolled out from the sampled intentions. However, it only
plans for one-time interaction with other agents. Intention-
POMDP [15] modelled the autonomous driving problem as
a POMDP to handle uncertain intentions. Luo et al. [16]
improved on [15] by using an interactive motion model
PORCA for the agents. However, both of them are designed
for driving in pedestrian environments. The work in [19] has
used a rich representation of road contexts to help predict
vehicles’ intention, but it also induces high computational
complexity compared to our approach. Gao et al. [17] extract
robot intent from a planned path and feed the intent to a
neural network to generate robot vehicle control. However,
their approach only considers the intent of the ego-vehicle,
ignoring those of exo-vehicles. Driving styles have also
been studied previously for planning under uncertainty in
autonomous driving application. The work in [20] predicts
vehicle’s driving style: whether aggressive or patient. The
predicted beliefs on driving style is modelled as hidden
states in POMDP for autonomous driving. The work in [21]
considers courteous driving style by placing a courtesy term
in the cost function. However, the courtesy is only considered
for the ego-vehicle. In contrast, our cost function considers
driver intents and driving styles of exo-vehicles.

Our previous work [1] used only driver intent as the hidden
states to formulate the autonomous driving problem as a
POMDP. Like other existing work, it assumes drivers are
rational with no adversarial behaviors. This paper focuses
on adversarial driving scenarios caused by irrational drivers.
We consider multiple exo-vehicles and use road contextual
information for both driver intent and driving styles inference
to achieve time efficient and safe decision making.

III. DRIVER INTENT AND DRIVING STYLE INFERENCE

We propose to use the road contextual information to help
infer driver intents and driving styles of the exo-vehicles.
The driver intent refers to actions such as, lane-keep and
lane-change. Whereas, the driving style represents driving
patterns that classify a driver as either rational or irrational
driver based on the frequency of lane changes and brakes
in their driving patterns. Our goal is to analyze and infer
the driver intents and driving styles of other road users to

help in interactive, safe and time-efficient path planning for
autonomous urban driving.

A. Driver Intent Inference

We implement a Long Short Term Memory (LSTM) recur-
rent neural network for inferring the short-term driver intent
beliefs of neighboring exo-vehicles [22]. We formalized
the intent as the lane-keep, left-lane change or right-lane
change. The input to the LSTM network are based on the
geometric features derived from the vehicle trajectory and
road contextual information. The features are (a) δx: Change
in lateral pose, (b) δy: Change in longitudinal pose, (c) ll: If
left lane exists (Boolean 0/1), (d) rl: If right lane exists
(Boolean 0/1) and (e) dcenter: Distance to the center of
current lane. dcenter values range from −1.5m to 1.5m as we
consider average lane width to be 3m. We train the LSTM
network on sequences with 4 time steps of 0.25 seconds
each. The training data for intent inference is obtained from
NGSIM vehicle trajectory dataset [23] complemented with
data collected by our ego-vehicle. The intent labels for the
ego-vehicle data are marked by a safety driver using the
indicator for referencing the start and the end of the intent.

B. Driving Style Inference

The driving style inference is a critical aspect of au-
tonomous safe planning which helps us in distinguishing a
rational exo-vehicle driver from an irrational one for risk-
aware decision making. We define driving style according
to the following categories: normal, longitudinally erratic,
laterally erratic, and both (longitudinally and laterally) er-
ratic. The decoupling of laterally and longitudinally erratic
driving styles allows us to differentiate between the exo-
vehicles that are aggressively steering and the ones that are
recklessly accelerating and braking, respectively.

Consider a trajectory for an exo-vehicle which is defined
as a temporal sequence of poses where a pose at time t
is represented as pt = (xt, yt, θt). We divide the driving
trajectory into time intervals of 1 second comprising of 4
time-steps with equal time. We train another LSTM with the
following features related to trajectory and road contextual
information as inputs to the network: (a) δx: Change in
lateral position, (b) δy: Change in longitudinal position and
(c) dcenter: Distance to the center of current lane.

The aforementioned features were specifically selected as
they efficiently represent the changes in the driving styles
with respect to the road contextual information. The output
of the LSTM network is a discrete probability vector φt over
four driving style classes ζ: i.e., normal, longitudinally er-
ratic, laterally erratic, and both (longitudinally and laterally)
erratic which is provided every 0.25 seconds.

We trained the LSTM network for driving style inference
on the NGSIM dataset. We extracted trajectories from the
dataset and clustered them into discrete groups by comparing
their deviation to candidate reference trajectories derived
from our transition model as described in IV-B. These clus-
tered trajectories are then filtered and labelled by a human
expert, before being divided into sub-sequences of 1 second.



We validated our proposed LSTM network by comparing it
with a rule-based method and time series forest (TSF) [24],
[25]. The rule-based approach considers the variance of δx
and δy of the exo-vehicles and applies fixed thresholds to
classify their driving styles. We use the same input features
as LSTM for TSF, with default parameters except for the
following: number of trees = 500, maximum tree depth =
10. We report the weighted average precision, recall and F1-
score for our test data in TABLE I. Our proposed method
outperforms TSF and rule-based method, as neural network
based methods are robust to noisy and unbalanced data.

Algorithm Accuracy Precision Recall F1 Score
Rule-based 0.64 0.62 0.64 0.63

TSF 0.75 0.74 0.75 0.72
LSTM network 0.83 0.83 0.81 0.82

TABLE I: Classification report comparison
In scenarios where we can observe an exo-vehicle for a

longer time period (longer than 1 second), we aggregate
the past inferences by using a Bayes filter. The advantage
of aggregating the inferences as compared to classifying a
longer series of driving data is that it allows for a shorter
lead time for the belief inference. From the classifier output
φt at each time-step t, we use a multi-class discrete Bayes
filter in the following recursive form to maintain a posterior
class belief distribution of an exo-vehicle’s driving style β:

p(ζ = β|p1:t) ∝
p(ζ = β|pt)
p(ζ = β)

p(ζ = β|p1:t−1) (1)

where Bayes rule and Markovian assumption are applied.
p(ζ = β) refers to the prior class distribution of predictions
and p(ζ = β|pt) = φt,β , where φt,β is the output probability
of the LSTM network corresponding to the class β at time t.
We also add a Laplacian smoothing factor in order to ensure
p(ζ = β) > 0 for each class β.

IV. CONTEXT, INTENT AND DRIVING STYLE AWARE
POMDP PLANNING

We formulate the behavior planning for autonomous driv-
ing as a POMDP [26] since it provides a principled way
to model the uncertainty on intents and driving style for
autonomous driving. We refer to our method as Context
Intent and Driving style (CID) aware POMDP planner.

A. POMDP Preliminary

A POMDP models an agent acting in a partially observable
stochastic environment. It is formally defined as a tuple
(S,A,Z, T,O,R, b0), where S, A, and Z is the state space,
action space, and observation space respectively. T = p(s′|s)
is the probabilistic state transition from s ∈ S to s′ ∈ S when
the agent takes the action a ∈ A. It models the imperfect
control of the agent. O = p(z|s, a) is the observation
function defining the probability of observing z ∈ Z when
the agent takes a and reaches s. This models the sensor
noise. R(s, a) is the reward function defining the reward
the agent can get by executing a when it at s. Since the
agent does not know the exact state it is currently in due
to partial observability, it maintains a belief, i.e., probability
distribution, over its current state, and b0 is its initial belief.

POMDP planning aims to find a policy π, a mapping from
a belief b to an action a, that maximizes the expected total
discounted rewards:

Vπ(b) = E
( ∞∑
t=0

γtR(st, π(bt))
∣∣∣ b0 = b

)
, (2)

where t is the time step, and γ ∈ (0, 1] is a discount factor
which places preference for immediate rewards over future
ones. The expectation is taken over the sequence of uncertain
states and observations in the future.
B. POMDP Model

1) State Modelling: The state in our problem consists of
the road contexts Ω, the pose p and the speed v of each
vehicle, the intent ξ and the driving style β of exo-vehicles.

2) Action Modelling: We define our action space as
{LANE-KEEP, LEFT-LANE-CHANGE, RIGHT-LANE-CHANGE}.
The steering and speed of the ego-vehicle is computed
according to the planned action using our transition model.

3) Observation Modelling: The observation comprises the
road context Ω, the pose p and speed v of each vehicle. To
focus on modelling the hidden intent ξ and driving style β,
we assume the observation over Ω, p and v has no noise.

4) Transition Modelling: The transition function models
the movements of each vehicle. We used a driving style
enhanced Time-To-Collision (TTC) trajectory predictor to
model the movements. Our predictor improves on our pre-
vious trajectory predictor [1]. The TTC trajectory predictor
predicts the trajectory of a vehicle using 5th order and 4th
order polynomial curve fitting for lateral displacement and
longitudinal displacement, respectively. It uses a time-to-
collision model to predict the end state. Specifically, it predict
the end speed by

ṡ1 = min

(
vmax,

√
max(0, v2f + 2amax(df − dsafe)

)
, (3)

where vmax is the maximum speed allowed, vf is the current
speed of the front vehicle and dsafe is a predefined and
fixed-value safe distance. The end acceleration is computed
accordingly by

s̈1 = (ṡ1 − ṡ0)/t1. (4)
We improve on this TTC-based predictor by incorporating
the driving style to it. Drivers with different driving style tend
to keep different safe distances. Instead of using predefined
and fixed-value dsafe, we adjust dsafe based on the driving
style inference of the surrounding vehicles. For example,
we use a larger dsafe for conservative drivers, to model its
behavior of safe driving. In contrast, if a driver is aggressive,
we use a smaller dsafe, to model its behavior of aggressive
driving. With our driving style enhanced trajectory predictor,
we build our transition function by adding a Gaussian
noise on the trajectory. Specifically, for each time step, the
transition of the pose is defined by:

p(pt+1 | pt−3:t, ξ,Ω) = f
(∥∥∥pt+1 − ppred

t+1

∥∥∥ | 0, σ2
)
, (5)

where pt−3:t is a 4-time-step history of the past poses, ppred
t+1

is the pose extracted from the trajectory predicted by our
predictor, and f is the probability density function of the
Gaussian distribution with mean 0 and variance σ2.



5) Reward Modelling: We designed the reward function
considering both the time efficiency and the safety following
the idea in [1]. We achieve time efficiency by penalizing
the ego-vehicle when it drives on the lane farther to its
destination by a penalty R = −100 × (d/dmax) where d
is the distance from current lane to the destination lane and
dmax is the maximum inter-lane distance, and we penalize
the ego-vehicle by a penalty R = 20× v−vmax

vmax
to encourage

it to select the lane on which it can drive faster. In addition,
we penalize collisions with exo-vehicles with a penalty of
R = −1000×max [(4− d)2, 1], where d < 4 meters is the
distance between the two vehicles in collision. We sum them
up with equal weights as the final reward.

6) Initial Beliefs: The initial beliefs over the intents and
driving style at each time step is inferred by the intent and
the driving style predictors as proposed in Section III.

C. POMDP Solver

We use IS-DESPOT [2], a state-of-the-art online POMDP
solver to solve our POMDP. To handle the high computa-
tional complexity of solving a POMDP, most state-of-the-
art online POMDP solvers leverages Monte Carlo sampling
in planning. However, this naive sampling strategy often
overlooks rare but critical events, resulting in risky policy. A
key feature of IS-DESPOT is the use of importance sampling
to handle rare but critical events. In autonomous driving,
collisions are the rare but critical events. We use IS-DESPOT
to handle collisions, generating risk-averse driving policies.

To use IS-DESPOT, it requires us to design an impor-
tance sampling distribution q, which, in this case, can be
interpreted as a deformed transition function with increased
probability for critical states and decreased probability for
others. We design q empirically. We increase the probability
of the collision state for vehicles with erratic driving style.

V. EXPERIMENTAL RESULTS

We validate our behavior planner CID, Context Intent and
Driving style aware POMDP planner, with both simulated
and real-world data. We compare the outcome of CID with
different baseline algorithms as presented below.
A. Baseline algorithms

We compared CID with five baselines, including, Reactive-
Controller, SimmobilityST, Pessimistic-Planner, Optimistic-
Planner and Max-Likelihood-Planner.

1) Reactive-Controller: Reactive-Controller [15] per-
forms reactive actions based on ego-vehicle’s distance to
neighboring vehicles.

2) SimmobilityST: SimmobilityST [27] uses a hierarchical
decision making process for controlling the driving behavior
of each vehicle centrally.

3) Pessimistic-Planner: This is a variant of our CID plan-
ner with an assumption that all exo-vehicles are adversarial.

4) Optimistic-Planner: This is also a variant of our plan-
ner with an assumption that all exo-vehicles are rational.
This assumption results in similar outcome to our previous
work [1] where the driving styles of other road users is not
accounted for planning.

5) Max-Likelihood-Planner: This planner plans vehicle
actions assuming the world state to be the one that is the most
likely inferred by our predictor. It plans by doing forward
simulations starting from the current state and selects the
action branch with highest reward.

B. Experiments in Simulation

We used SimMobility simulator for exhaustively testing
on a wide-range of scenarios with different intensities of
adversarial behaviors for the exo-vehicles. The exo-vehicles
are centrally controlled by SimMobilityST for normal driving
styles and are modified for the erratic ones. The ego-vehicle
is controlled by the corresponding baseline algorithm. We
used real road network and the road contextual information
for the simulations. For the qualitative analysis of our planner
CID, we specifically designed five exemplar adversarial sce-
narios. Each of these scenarios present adversarial situations
for the ego-vehicle’s planner by executing either laterally or
longitudinally erratic behaviors. These scenarios and their
results from our planner are presented in Fig. 1.

Scenario 1 (Fig. 1, Row 1) presents one slow moving, lat-
erally erratic, exo-vehicle which constantly oscillates within
the lane and frequently changes lanes. Without inferring the
laterally erratic driving style of the exo-vehicle, the ego-
vehicle can easily mistake it for a lane change intent and
can potentially result in a collision. For example, Optimistic-
Planner and SimmobilityST baseline algorithms expect a
rational driving style from the exo-vehicle and attempts to
overtake it, resulting in a collision. In contrast, CID accounts
for the laterally erratic driving style of the exo-vehicle and
slows down to maintain a safety distance.

Scenario 2 (Fig. 1, Row 2) generates one slow moving,
longitudinally erratic vehicle that remains in lane but con-
stantly brakes and randomly changes speed. This driving
style of the exo-vehicle can potentially cause rear-end colli-
sion with ego-vehicle. Reactive-Controller is saved from the
potential collision as it changes lane to increase its headway
distance, however, it ends up in the lane which takes a longer
path to the destination. SimmobilityST and Pessimistic-
Planner do not collide as they maintain a safe distance to
the exo-vehicle though at the cost of taking a longer travel
time to reach the destination. Optimistic-Planner attempts to
overtake the exo-vehicle with the assumption that it would be
rational and occasionally ends up in a collision when the exo-
vehicle suddenly accelerates aggressively. Our planner, CID,
infers the longitudinally erratic behavior of the slow moving
exo-vehicle and changes lane. It then waits for a safety target
gap and successfully overtakes the longitudinally erratic
vehicle to align with the shortest path to the destination,
thus accounting for both safety and time efficiency.

Scenario 3 (Fig. 1, Row 3) increases the adversity for the
ego-vehicle with two longitudinally erratic vehicles in two
lanes, providing only one option to avoid collision and reach
the destination. Reactive-Controller surprisingly overtakes
the first exo-vehicle however, with a very small safety
margin. SimmobilityST and Pessimistic-Planner constantly
follows the first exo-vehicle at a safe distance, taking a really



long time to reach the destination. Similar to Scenario 1,
Optimistic-Planner attempts to overtake the first exo-vehicle
with little gap between the two exo-vehicles and occasionally
ends up in a collision due to a premature lane change.
Our CID planner changes lane after inferring longitudinally
erratic driving style of the first exo-vehicle. After changing
lane, it finds the second vehicle and infers its behavior
as longitudinally erratic as well, it then slows down and
maintains safety distance to the second exo-vehicle until a
gap is available for an overtake. It finally overtakes the first
exo-vehicle and safely reaches the destination.

Scenario 4 (Fig. 1, Row 4) is a combination of two
vehicles where the first one is longitudinally erratic and the
second one is laterally erratic. Similar to Scenario 3, CID
changes lane after inferring that the first exo-vehicle is lon-
gitudinally erratic. It then encounters the second exo-vehicle
and infers that it is laterally erratic. Our planner then slows
down and waits for a safe gap. Lastly, it waits for the second
exo-vehicle to clear from the scene and increases its speed for
continuing to the destination. Unlike our planner, all the other
baselines except Pessimistic-Planner, occasionally results in
a side-way collision with the laterally erratic exo-vehicle.

Scenario 5 (Fig. 1, Row 5) presents two laterally erratic
exo-vehicles which eventually become normal. This scenario
showcases the ability of our planner to dynamically update its
actions while accounting for changes in behavior. Our CID
planner first infers both exo-vehicles as erratic and slows
down to keep a safe distance. Once the behavior of the
first exo-vehicle is updated to normal, our planner passes it.
Next, our planner then guides the ego-vehicle to stay in lane
and keep a safe distance to the second exo-vehicle. Lastly,
when the behaviour of the second exo-vehicle is also updated
to normal, the ego-vehicle increases its speed and safely
continues its path to the destination. All the other baselines
except Pessimistic-Planner, occasionally result in a side-way
collision with one of the laterally erratic exo-vehicles.

We randomly sample from adversarial scenarios to gener-
ate a range of adversarial driving sequences for quantitative
analysis of our planner with respect to the baselines. We
executed 100 iterations per algorithm. The performance cri-
teria for the quantitative results is based on two fundamental
metrics for autonomous driving: safety and efficiency. The
safety is measured by collision rate and the efficiency by
the travel time to the destination. A summary of our results
for CID planner compared to the baselines in adversarial
scenarios is presented in TABLE II.

It can be observed that Pessimistic-Planner and our
CID planner, both have zero collision rate. However, the
Pessimistic-Planner takes longer travel time, showcasing
poor efficiency. In contrast, CID has reasonable travel time
compared to average travel time for all baselines. Both
Optimistic-Planner and Max-Likelihood-Planner achieves
better efficiency than our planner. However, they have higher
collision rates because Optimistic-Planner believes all other
drivers drive rationally while Max-Likelihood-Planner is too
confident on the state it infers which, however, could be
wrong. In addition, we also performed a comparative study

Algorithm Collision Rate Travel Time (s)
Reactive-Controller 0.21 61

SimMobilityST 0.21 74.5
Pessimistic-Planner 0 121.5
Optimistic-Planner 0.12 60.8

Max-Likelihood-Planner 0.17 62
CID 0 72

TABLE II: Adversarial Scenarios: Average performance
comparison over 100 randomly generated scenarios.

when all exo-vehicles exhibit rational driving styles. The
scenarios for the rational behavior are adapted from our
previous work [1]. These results are presented in TABLE III.

Algorithm Collision Rate Travel Time (s)
Reactive-Controller 0.0 78.7

SimMobilityST 0.0 71.7
Pessimistic-Planner 0.0 162
Optimistic-Planner 0.0 63

Max-Likelihood-Planner 0.0 61.3
CID 0.0 63.2

TABLE III: Normal scenarios: Average performance com-
parison on 100 randomly generated scenarios.

Since all the exo-vehicles behave rationally, the collision
rate is observed to be zero for all planners. In terms of
efficiency, our planner performs at a same level as Max-
Likelihood-Planner which has the least travel time.

C. Experiments in Real World

We validated our planner using a self-driving car, SCOT
[28] in a real urban environment of Singapore. We specifi-
cally tested Scenarios 1 and 2 with single exo-vehicle which
is laterally and longitudinally erratic. The two scenarios are
presented in Fig. 2 and 3. The high-level action of our
CID planner is compared with the actions of an unbiased
safety driver for the ego-vehicle who was not provided any
information about the test scenarios. The speed of the ego-
vehicle inferred by our transition model is also qualitatively
compared with the human driver’s decisions.

In Scenario 1, the vehicle initially infers the exo-vehicle
as laterally erratic from its movement. CID outputs a lane
keep action with slow speed to keep a safety distance. This
action is in-line with the safety driver’s decision. In frame 2
and 3, the exo-vehicle swerves between the two lanes, and
CID outputs a right lane change action (indicated by red
strip), while still keeping a slow speed, as the best option.
Similarly, the safety driver decides to lane change. Finally, in
frames 4 and 5, the exo-vehicle again attempts to block the
ego-vehicle as an adversary. Both CID and the safety driver
identifies the exo-vehicle to be lane-changing and maintains
a safe speed in the current lane (blue strip).

For Scenario 2, frame 1, the ego-vehicle observes the exo-
vehicle to be longitudinally erratic and maintains a safety
distance while keeping in lane. In frame 2, CID outputs
right lane change action. The safety driver also decides the
same as seen in the following frame (frame 3). During frame
3, CID momentarily infers the exo-vehicle to be laterally
erratic and slows down. It was observed that the safety
driver had also slowed down. A potential reason is due
to the fact that the exo-vehicle swayed towards right as



frame 1 frame 2 frame 3 frame 4

Fig. 1: Scenario 1 to 5 (row 1 to row 5), each with 4 frames. Ego-vehicle is in cyan. Exo-vehicles with normal, longitudinally
erratic, and laterally erratic driving style are in violet, yellow and black stripes, and white and black stripes respectively.
Actions are represented by blue, green and red lane strips for lane keep, left lane change and right lane change respectively.

frame 1 frame 2 frame 3 frame 4 frame 5

Fig. 2: Scenario 1 in real world. The ego-vehicle (cyan) encountered a slowly-moving laterally erratic vehicle. The actions
suggested by the planner matched with those the driver actually executed.

frame 1 frame 2 frame 3 frame 4 frame 5

Fig. 3: Scenario 2 in real world. The ego-vehicle (cyan) encountered a slowly-moving longitudinally erratic vehicle. The
actions suggested by the planner matched with those the driver actually executed.

there is an incoming merging lane on the left. In frames
4 and 5, our planner correctly infers the exo-vehicle to be
longitudinally erratic (indicated as yellow) and accelerates
in lane. The safety driver is also observed to increase speed
while passing by the exo-vehicle. The online video (http:
//bit.ly/cid_planner_2021) shows sample runs of
CID both on the real car and in simulation.

VI. DISCUSSION AND CONCLUSION

We presented a novel and interactive, context, intent and
driving style aware POMDP planner, CID, for autonomous
urban driving in adversarial scenarios. The road contextual

information and driver intent inference used for our planner
helped in efficient planning, whereas the driving style in-
ference accounted for safety. We validated our planner in
challenging dynamic urban environments with adversarial
scenarios. Our experimental results in simulation and on real-
world data showcased significantly better performance of our
planner compared to five different baseline algorithms.
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