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Abstract—Real-time planning under uncertainty is critical for

robots operating in complex dynamic environments. Consider,

for example, an autonomous robot vehicle driving in dense,

unregulated urban traffic of cars, motorcycles, buses, etc.. The

robot vehicle has to plan in both short and long terms, in

order to interact with many traffic participants of uncertain

intentions and drive effectively. Planning explicitly over a long

time horizon, however, incurs prohibitive computational cost and

is impractical under real-time constraints. To achieve real-time

performance for large-scale planning, this work introduces a new

algorithm Learning from Tree Search for Driving (LeTS-Drive),

which integrates planning and learning in a closed loop, and

applies it to autonomous driving in crowded urban traffic in

simulation. Specifically, LeTS-Drive learns a policy and its value

function from data provided by an online planner, which searches

a sparsely-sampled belief tree; the online planner in turn uses

the learned policy and value functions as heuristics to scale up

its run-time performance for real-time robot control. These two

steps are repeated to form a closed loop so that the planner

and the learner inform each other and improve in synchrony.

The algorithm learns on its own in a self-supervised manner,

without human effort on explicit data labeling. Experimental

results demonstrate that LeTS-Drive outperforms either planning

or learning alone, as well as open-loop integration of planning

and learning.

Index Terms—Planning under uncertainty, Robot learning,

Autonomous driving

I. INTRODUCTION

A
S robots move closer to our daily lives in offices,
homes, or on the road, a major challenge is tackling

complex, highly dynamic, and interactive environments in real
time. One example is crowd-driving: an autonomous vehicle
drives through crowded roads and uncontrolled intersections,
with heterogeneous traffic flows of cars, motorcycles, buses,
etc. (Fig. 1). The many traffic participants act aggressively to
compete for the passageway and avoid collisions, leading to
complex interactions and sometimes chaotic traffic. To drive
effectively in such an environment, the robot vehicle must
perform long-term planning in order to hedge against potential
hazards in the future and balance short-term and long-term
risks. The primary challenge is the scalability of planning in
high-dimensional state spaces: for crowd-driving, the world
state is the cross-product of the individual states of the ego-
vehicle and many traffic participants nearby. The challenge
compounds with uncertainties, as a result of complex environ-
ment dynamics, as well as imperfect robot control and sensing.
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Fig. 1. Crowd-driving. Drive through dense, unregulated, heterogeneous
traffic of cars, motorcycles, buses, pedestrians, . . . in complex urban envi-
ronments.

One common approach to real-time planning is to per-
form online look-ahead search under a suitable model. The
challenge of long-term planning then depends directly on the
search horizon, H . With increasing H , the size of the search
tree grows exponentially, quickly breaching the limit of real-
time computation. Further, the model error, if any, accumulates
and eventually results in sub-optimal decisions. Naturally, we
ask: can we reap the benefits of long-term planning without a
deep search?

To tackle this challenge, we propose Learning from Tree
Search for Driving (LeTS-Drive), which integrates planning
and learning in a closed loop. The algorithm comprises two
key ideas:

• plan locally and learn globally, and
• close the planning-learning loop.

The algorithm consists of two interacting components, an
online planner and a learner. The planner plans locally, through
online look-ahead search with a short horizon, and relies on
learned heuristics—policy and value neural networks trained
from data—as global approximations to guide the search.
In parallel, the learner gathers experiences from the planner
and uses the data to improve the policy and value networks
continuously. It feeds the improved heuristics back to the
planner, thus closing the planning-learning loop and improving
both planning and learning in synchrony. As a result, LeTS-
Drive learns the heuristics both from and for online planning
in a self-supervised manner, without human effort on explicit
data labeling. See Fig. 2 for an illustration.

LeTS-Drive uses the partially observable Markov decision
process (POMDPs) as a model of uncertainties. We build our
planner on top of HyP-DESPOT [1], a state-of-the-art online
POMDP planning algorithm, by integrating it with learned
policy and value networks. LeTS-Drive greatly improves the
scalability of online planning under uncertainty. Furthermore,
it provides theoretical guarantee on the near-optimality of its
decisions, despite using heuristics learned approximately.

https://github.com/cindycia/lets-drive
DH
APPEARED IN

DH
IEEE Trans. on Robotics, 

DH
39(2):998–1011, 2023



3

LeTS-Drive is flexible and can take advantage of both self-
supervised and reinforcement learning. The self-supervised
learner fits the policy network and the value network directly
to the planner outputs. It then iteratively updates the policy,
using tree search as the policy improvement operator. The rein-
forcement learner learns a policy network from environmental
feedback directly, treating the planner as an off-policy actor
to provide high-quality exploration and reward.

The underlying idea of LeTS-Drive aligns in spirit with
AlphaGO-Zero [2], which uses learning-guided game tree
search. AlphaGO-Zero has beat the human world champion of
GO, a perfect-information two-player board game. However,
real-life robotics tasks, such as driving in dense traffic, pose
the new challenges of partial observability, complex dynamics,
and interaction with many heterogeneous agents. The resulting
uncertainties are major obstacles to scalability.

We evaluate LeTS-Drive in a realistic simulator, SUMMIT
[3], which simulates dense, unregulated urban traffic at world-
wide locations. Given any urban map supported by the Open-
StreetMap [4], SUMMIT automatically generates realistic traf-
fic, using GAMMA [5], a recently developed traffic model that
has been validated on multiple real-world datasets. Our results
show that by integrating planning and learning, LeTS-Drive
significantly outperforms either planning or learning alone.
Further, closed-loop integration enables significantly faster
learning and better asymptotic performance than open-loop
integration. After training, LeTS-Drive exhibits sophisticated
driving behaviors in dense, chaotic traffic, and generalizes to
diverse environments.

II. BACKGROUND

A. Online POMDP Planning
Planning under uncertainty is critical for robust robot per-

formance in complex, dynamic environments. A key challenge
is partial observability: true system states are not known
accurately and only revealed partially from sensor observa-
tions. A principled solution is belief-space planning: maintain
a belief, a probability distribution, over possible system states;
then, conditioned on the belief, predict possible future states
and observations, and optimize the robot’s control policy in
simulated hindsight. This process is formalized as the partially
observable Markov decision process (POMDP) [6].

Formally, a POMDP model is represented as a tuple
(S,A,Z, T,O,R), where S represents the state space of the
world, A denotes the space of possible actions, and Z repre-
sents the space of observations. T , O, and R denote the tran-
sition function, observation function, and the reward function,
respectively. Concretely, the model assumes a discrete-time
Markovian random process. When the robot takes an action a
at a state s, it assumes the world transits to a new state s0 at
the next time step with a probability p(s0|s, a) = T (s, a, s0).
After that, the robot receives an observation z with probability
p(z|s0, a) = O(s0, a, z), together with a real-valued reward
R(s, a).

To plan, the robot maintains a belief b, a probability
distribution over S, where b(s) denotes the probability of the
robot being in state s. POMDP planning searches for a belief-
space policy ⇡ : B ! A, which prescribes for each belief b in

the belief space B an action a that optimizes future values. For
infinite horizon POMDPs, the value of a policy ⇡ at a belief b
is defined as the expected total discounted reward over time,
achieved by executing the policy ⇡ from b:

V⇡(b) = E
 1X

t=0

�tR(st,⇡(bt))

���� b0 = b

!
, (1)

where � 2 [0, 1) is a discount factor and t is the time step.
Complex tasks are often solved using online planning: at

each time step, the planner computes an optimal action a⇤

for the current belief b, executes it immediately, and re-plans
in the next time step. Online planning is usually performed
using belief tree search. The search starts from the current
belief and constructs a tree consisting of all reachable beliefs
in the future. This is achieved using Monte Carlo (MC)
simulations—the robot takes an action at the current state,
receives an observation of the outcome, then takes the next
action, so on and so forth. A full belief tree considers all
possible outcomes of MC simulations. It recursively branches
with all feasible actions then all possible observations, until
reaching a maximum planning horizon H .

The desired output of belief tree search is an optimal policy,
⇡⇤, that maximizes the value at the current belief b0:

⇡⇤ = argmax
⇡2⇧

V⇡(b0), (2)

where ⇧ denotes the set of all possible closed-loop policies.
The optimal policy is computed by applying the Bellman’s
operator to all nodes in the belief tree:

V (b) = max
a2A

V (b, a) (3)

V (b, a) = R(b, a) + �
X

z2Z

p(z|b, a)V (b0) (4)

where b is a belief node and b0 is a child of b produced
by an action-observation pair, a and z, through Bayesian
belief update (Eqn. 6). The first term of Eqn. (4), R(b, a) =P

s2S
R(s, a)b(s), calculates the expected immediate reward

of taking action a at belief b. The second considers the
expected long-term value marginalized over child beliefs,
where,

p(z|b, a) =
X

s02S

O(s0, a, z)
X

s2S

T (s, a, s0)b(s), (5)

represents the probability of observing the relevant z after
taking action a at b.

A naive approach of optimal planning is to perform dynamic
programming in the belief tree, using Eqn. (3) and (4) as the
backup operator. After planning, the robot executes the optimal
action at the root. Then, it updates the current belief according
to the action at taken and the observation zt received, using
a Bayes filter [7]:

bt(s
0) = ⌘O(s0, at, zt)

X

s2S

T (s, at, s
0)bt�1(s). (6)

The filter first considers the state-transition probabilities,
T (s, at, s0), then applies the likelihood of the observation,
O(s0, at, zt), and finally, normalizes probabilities of states
using a normalization constant ⌘. After update, the new belief
bt becomes the entry point of the next planning cycle.
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B. Computational Complexity

POMDP planning suffers from the well-known “curse of di-
mensionality” and “curse of history” [6]. The cost of building
a full belief tree is O(|A|H |Z|H), where |A| and |Z| are the
size of the state and observation spaces, respectively, and H
is the planning horizon. Online planning typically allows for
a fixed amount of planning time, e.g., one second or below.
Building full belief trees quickly becomes intractable when
the action space size, observation space size, or the planning
horizon increase.

State-of-the-art belief tree search algorithms, POMCP [8]
and DESPOT [9], have made online POMDP planning prac-
tical. They have been successfully applied to real-world tasks
such as autonomous driving [10], [11], clutter manipula-
tion [12], multi-agent planning [13], etc.. Practical POMDP
planning uses two core ideas: MC sampling and anytime
heuristic search. They sample the starting states and future
outcomes of MC simulations, then condition belief tree search
on the sampled states and observations to reduce the compu-
tational cost. Further, the algorithms approximate the value of
unsearched branches using heuristics, so that the tree search
can be terminated at anytime and make approximate decisions.

Specifically, DESPOT [9] conditions belief tree search on
a set of K sampled scenarios. It reduces the complexity of
planning to O(|A|HK) while achieving near-optimality of
decisions (see Section V-A for details). HyP-DESPOT [1]
further scales up DESPOT through massive parallelization,
achieving state-of-the-art performance on large-scale POMDP
planning benchmarks. It has also been successfully applied to
driving tasks in both off-road [14] and on-road [3] scenes.

Despite the progress, DESPOT and HyP-DESPOT may still
struggle with online planning tasks with very long horizons
or large action spaces, producing highly sub-optimal decisions.
LeTS-Drive addresses the challenge through learned heuristics.
The learned policy network reduces the effective branching
factor by guiding the search. The learned value network
reduces the search to a shortened horizon D, beyond which
LeTS-Drive simply uses the learned values as approximations.
With heuristic values learned properly, the cost of optimal on-
line planning is further reduced to O(|A|DK). With D ⌧ H ,
LeTS-Drive becomes exponentially more efficient.

C. Integrating Planning and Learning

Integrated planning and learning brings benefits from both
the power of explicit reasoning and the robustness of learning
from data [2]. Recent advances in machine learning bring
many new interesting opportunities in this direction.

One approach is to develop differentiable planners, i.e.,
impose a planning algorithm as the structure prior on the
neural network (NN) architecture for learning, so that both
the model and algorithm parameters are trained jointly end-
to-end [15], [16], [17], [18], [19], [20]. UPN [19] and DPC
[20] have implemented trajectory optimization and model
predictive control using neural networks. For MDP/POMDP
planning, VIN [15] and QMDP-Net [16] encode the value
iteration algorithm in an NN to solve navigation tasks. TreeQN

embeds a fixed forward search tree into an NN [17]. MCTS-
Net further performs dynamic tree search using learned tree
search operators [18]. As expected, the learned networks face
the same challenge of scalability as the underlying algorithm:
value iteration works well only in low-dimensional discrete
state spaces; searching a big tree using NN operators is not
affordable in real-time planning.

Another approach is learning for planning, i.e., injecting
learned components into planning. A natural choice is to learn
the dynamics and observation models and utilize them for
planning, model-based reinforcment learning, or optimal con-
trol [21], [22], [23]. One may also learn sampling distributions
[24], local goals [25], or macro-actions [26], and use them to
assist planning. We propose to learn heuristics for planning
under uncertainty, in order to alleviate the exponential cost
of online POMDP planning. Our earlier work [27] integrates
POMDP planning with learning using two stages. The offline
stage learns a policy and its value function from POMDP
planning. The online stage uses the learned policy and val-
ues to guide online search. The algorithm has demonstrated
success in driving among a crowd of pedestrians. However, its
performance is limited, as the learner and the planner do not
improve over time with additional experiences.

This paper extends our earlier work [27] in several as-
pects. First, LeTS-Drive closes the planning-learning loop.
The planner benefits from the learned policy and values
for improved real-time planning performance; at the same
time, it provides the data for learning the policy and value
approximations. Second, it provides theoretical guarantee on
the near-optimality of its decisions despite the use of learned
heuristics. Finally, we apply LeTS-Drive to a more challenging
driving setting in simulation, with dense, heterogeneous traffic
and complex road structures.

III. OVERVIEW

The LeTS-Drive algorithm consists of two interacting com-
ponents:

• an online planner that plans robot actions (Fig. 2a), and
• a learner that learns policy and value approximations,

represented as neural networks (Fig. 2b).
The planner and the learner run concurrently, forming a closed
loop between planning and learning.

The planner is the actor. In each time step, it performs belief
tree search at the current belief, using the learned policy and
value networks (Fig. 2c) as heuristics to guide the search.
It then chooses the action with the highest estimated value
for execution. At the same time, the planner collects data for
learning. It forms a data tuple, consisting of the current belief,
supervision labels such as the planned action and the estimated
value, and the reward received from the environment after
executing the action. It then adds the tuple to a data buffer
to share with the learner.

Concurrently, the learner samples data from the shared
buffer containing the planner’s experiences and uses them
to optimize the policy and value networks. In each training
iteration, the learner samples a fixed number of data points.
For self-supervised learning, it fits the policy network to the
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Fig. 2. LeTS-Drive consists of an online planner and a learner, running
concurrently. (a) Online POMDP planning. (b) Learning policy and value
neural networks. (c) To speed up planning, the learner provides the planner
policy and value approximations. (d) The planner provides actions and values
as data to the self-supervised learner. (e) The planner provides actions and
the simulator provides rewards as data to the reinforcement learner.

labeled actions and fits the value network to the labeled values
(Fig. 2d). For reinforcement learning, it optimizes the policy
network using the reward from the environment (Fig. 2e).

Effectively, LeTS-Drive maintains two policies. The planner
induces a policy implicitly. The learner represents a policy
explicitly as a neural network, learned from the planner’s
experiences. Both policies are useful. The learner policy
directly maps state histories to actions. It is simple and fast.
The planner policy performs guided belief tree search, on top
of learned policy and value approximations. This improves the
quality of action selection in complex situations. If the search
tree depth is 0, then the planner and learner policies become
the same.

The planning-learning loop starts with randomly initialized
policy and value networks, and improves both the planner pol-
icy and the learner policy in synchrony through accumulated
experiences.

In the following, we present a specific POMDP model
for autonomous driving in a crowd as a representative task
(Section IV). We then describe the learning-guided planner
(Section V) and the planning-informed learner (Section VI).
The underlying idea of LeTS-Drive is general and not specific
to autonomous driving.

IV. POMDP FOR DRIVING IN A CROWD

The crowd-driving task is to control an ego-vehicle to drive
in dense, unregulated traffic, e.g., to cross an uncontrolled
intersection as fast as possible. The ego-vehicle has to drive
safely and conform to the lane network of the map, i.e., on
lane directions and lane connectivity. The traffic is not properly
regulated by traffic rules. Participants drive aggressively, e.g.,
can abruptly cut through the way of and overtake the ego-
vehicle, forming a challenging dynamic environment.

The POMDP model primarily models the uncertainties in
the intentions and attentions of exo-agents. An exo-agent is
a nearby traffic participant potentially interfering with the
ego-vehicle within the planning horizon. The intention of an
exo-agent specifies which route on the urban map it intends
to take, and its attention specifies whether it will actively
avoid collision with others (attentive) or not (distracted). Our
POMDP model is improved from the one described in [3]
by allowing the ego-vehicle to plan both its driving path and
longitudinal accelerations. The new model also uses a factored
reward function to facilitate value learning.

A. States and Beliefs

Our state includes both continuous-valued physical states
and discrete-valued hidden states of involved traffic partici-
pants:
• Physical state of the ego-vehicle, sc = (x, y,~v,�), includ-

ing the position (x, y), the velocity ~v, and the heading
direction �.

• Physical states of exo-agents, {si = (xi, yi,~vi,�i)}i2Iexo ,
including the position (xi, yi), the velocity ~vi, and the
heading direction �i of each exo-agent. Iexo defines the
indices of exo-agents. Physical states can be detected from
sensor inputs, but imperfectly.

• Hidden states of exo-agents, {✓i = (ti, µi)}i2Iexo , includ-
ing the driver’s attention ti (attentive / distracted) and the
intended route µi of the ith traffic agent. The hidden states
can not be detected by sensors and can only be inferred
from history.

We assume the set of exo-agents stays constant during plan-
ning, and update it before each online planning cycle.

A belief b thus encodes a posterior distribution over 1) phys-
ical states of all agents, and 2) exo-agents’ hidden variables
(intentions and attentions). The belief is updated at every time
step according to new observations using a Bayes filter (Eqn.
6).

B. Actions

An action of the ego-vehicle is the cross product of the
lane-keeping/changing decision and the longitudinal accel-
eration. Each dimension contains three possible values: for
lane decisions, {Left,Keep,Right}, and for accelerations,
{Acc,Maintain,Dec}. Candidate lanes are extracted from
the lane network of the map. A lane decision is executed using
a pure-pursuit algorithm [28] to track the center path of the
selected lane. Acceleration values for Acc and Dec are 3m/s2

and �3m/s2, respectively. The maximum speed of the ego-
vehicle is 6m/s, from which it takes 2 seconds to reach a full
stop.

C. Observations and Observation Function

The observation function captures the observability of state
variables and the imperfection of sensing. For a given state
s = (sc, {si, ✓i}i2Iexo), the observation z is (sc, {si}i2Iexo)
with discretized values.
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D. State Transitions

The state transition model simulates how traffic agents
interact with each other. It inputs the state of all agents,
s = (sc, {si, ✓i}i2Iexo), and the action of the robot, a, and
predicts the next state of all agents, s0 = (s0

c
, {s0

i
, ✓i}i2Iexo).

Motion predictions are conditioned on the intention and at-
tention of agents and constrained by kinematics. The model
assumes distracted agents blindly track their intended paths
with the observed speeds; attentive agents follow an optimal
local collision avoidance model [5] to interact with others,
while best following their intended paths. Kinematics of all
vehicle-like agents are approximated using bicycle models
[28]; kinematics of pedestrians are modeled as holonomic.
Finally, we perturb the displacements of all agents with
Gaussian noises to model the stochasticity of human behaviors.

E. Rewards

The reward function is defined as follows. When the vehicle
collides with any exo-agent or obstacle, we assign a huge
penalty, Rcol = �1000⇥ (v2 + 0.5), increasing quadratically
with the colliding speed v, to enforce safety. For efficiency, we
assign each time step a speed penalty Rv = 4(v�vmax)/vmax

to encourage driving at the maximum speed vmax = 6.0m/s.
We further impose a smoothness penalty Racc = �0.1 for
each deceleration to penalize excessive speed changes, and a
penalty of Rchange = �4 for each lane change to avoid jerky
paths. The rewards are additive.

F. Factoring Reward and Value Functions for Learning

The above reward function effectively encodes the objective
of safe, efficient, and smooth driving. However, it leads to a
highly non-smooth value function—the magnitude of values
drastically increases near collision events. To facilitate value
learning, we have further decomposed the value function into
two smooth factors: a safe-driving factor capturing efficiency
rewards and smoothness penalties, and a collision factor that
captures collision risks and the corresponding penalties. Values
of the two factors are computed using factored backup in the
belief tree search. We learn the two factors independently and
use the linear combination of them to recover the original
value function. This is possible since the reward function is
additive and the backup operator is linear. See Appendix A
for details of the reward and value factorization.

V. LEARNING-GUIDED PLANNING

To efficiently solve large-scale POMDP problems, LeTS-
Drive integrates online belief tree search with learned policy
and value functions, using them to reduce the computational
cost and improve real-time performance. Our planner is built
on top of HyP-DESPOT [1], a state-of-the-art online belief tree
search algorithm. In Section V-A, we provide a brief summary
of HyP-DESPOT. Then, we present our extensions over HyP-
DESPOT in Section V-B, and state our theoretical guarantee
on the near-optimality of planning in Section V-C.

A. HyP-DESPOT
HyP-DESPOT samples a set of scenarios as representatives

of the stochastic future. Each scenario, � = (s0,'1,'2, ...),
contains an initial state s0 sampled from the current belief and
a sequence of random numbers, '1,'2, ..., for determining the
outcome of Monte Carlo simulations. Specifically, a simulation
step, (s0, z, r) = g(s, a,'), samples a transited state s0, an
observation z, and a reward r using the POMDP model.
Sampling is determinized by the input random seed ', where
'i is used for the ith future time step. Each scenario thus
corresponds to a deterministic belief tree of size O(|A|H),
which only considers a single sampled observation as the
outcome of each action. HyP-DESPOT uses a collection of
K sampled scenarios to approximate the future, constructing
a sparse belief tree of size O(|A|HK). The root of the tree
contains K sampled initial states. Then, the tree recursively
branches with all possible actions but only observations en-
countered under the sampled scenarios. Each node b in the
tree captures a subset of scenarios �b that visits the node,
whose updated states approximate a future belief.

HyP-DESPOT performs anytime heuristic search to con-
struct the belief tree. It maintains for each node an upper
bound and a lower bound estimate of the node value, u(b) and
l(b), and uses them as tree search heuristics. In each iteration
or each trial, HyP-DESPOT starts from the root node b0,
traversing a single exploration path down to a leaf to expand
the tree.

At each node along the path, it selects the action branch
with the highest optimistic outcomes:

a⇤ = argmax
a2A

u(b, a) (7)

where u(b, a) denotes the upper bound value to be achieved
if applying a at b, computed from upper bounds of child
nodes as in Eqn. (4). Moving down, the path traverses the
observation branch with the maximum remaining uncertainty,
which is measured using the gap between the upper and lower
bound estimates. See [1] for details of the observation selection
heuristics.

When reaching a leaf node, the trial expands the node using
all possible next actions and sampled observations. Afterward,
the trial initializes the upper and lower bound values of the new
nodes. It performs Monte Carlo (MC) roll-outs to initialize
lower bounds and uses explicit heuristic functions to initialize
upper bounds (there generally exist ones that can be easily
written down). Both are conditioned on the sampled scenarios.
We refer to upper and lower bounds calculated in this way as
the MC value estimates. The initial MC estimates are denoted
as u0(b) and l0(b).

The traversal continues until further expansion is no longer
beneficial. HyP-DESPOT thus ends the trial and immediately
backs up new information to the root, updating upper and
lower bounds for belief nodes along the way using the Bell-
man’s operator (Eqn. 3 and 4). After finishing the backup, a
new trial starts.

HyP-DESPOT executes in an anytime fashion, terminating
the search until a maximum planning time is reached or when
the gap between the upper and lower bounds at the root
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becomes sufficiently small, in which case it produces near-
optimal actions. HyP-DESPOT further performs parallel tree
search. Multiple threads execute concurrent trials to expand
the tree collaboratively.

B. Incorporating Learned Heuristics
The LeTS-Drive planner extends HyP-DESPOT, incorporat-

ing the learned policy and values in the heuristics to perform
guided belief tree search. It uses the policy network to guide
forward traversal, and uses the value network to approximate
long-term returns. Fig. 2a briefly illustrates the guided belief
tree search algorithm.

The policy network is queried at each node along the
exploration path to provide prior probabilities over actions
(Fig. 2a-policy). The probabilities are used to bias action
selection. Specifically, a trial visiting a node b selects an action
branch to traverse using a UCB-like heuristics:

a⇤ = argmax
a2A

(
u(b, a) + c ⇡✓(a|xb)

s
N(b)

N(b, a) + 1

)
. (8)

The improvement of Eqn. (8) over Eqn. (7) is the additional
exploration bonus weighted by a constant factor c. ⇡✓(·|xb)
denotes the prior probabilities output by the policy network
⇡✓ at the history state xb, a 4-step history at b encoded as
images (see Section VI-A). It prioritizes actions suggested
by the learned policy. The bonus further depends on the
visitation count of b, i.e., the number of times b has been
visited by previous trials, denoted as N(b), and the visitation
count of its child action branch, N(b, a). This encourages
exploration. When visiting a node the first few times, upper
bound estimates of actions, u(b, ·), are often uninformative.
The action selection is therefore strongly biased by the learned
policy, with a desirable level of exploration ensured by the
visitation count term. After sufficient search, the difference
of upper bounds gradually dominates the heuristics, making
it behave more similar to Eqn. (7). The observation selection
heuristics remain the same as HyP-DESPOT.

The value network is queried at each leaf node to an initial
value estimate of the node (Fig. 2a-value):

v̂0(b) = min
�
max

�
l0(b), v✓0(xb)

�
, u0(b)

�
, (9)

where b is a new leaf node, and v✓0(xb) is the prior value
predicted by the value network v✓0 at the history state xb

(see Section VI-A). The prior value has been learned from
past experience, providing accurate value estimates that can
otherwise only be acquired by searching the corresponding
sub-tree sufficiently. Eqn. (9) further performs value clipping
to regulate the prior values. For a leaf node b, it clips
the prior value, v✓0(xb), using the initial MC bounds, l0(b)
and u0(b), to produce an initial learned value, v̂0(b). Value
clipping guarantees the correctness of learned values, ensuring
a relationship of l0(b)  v̂0(b)  u0(b), which helps maintain
theoretical guarantees of planning. See theoretical details in
Section V-C.

During backup, we update both the learned value and the
MC value estimates of belief nodes, using the Bellman’s
operator (Eqn. 3 and 4). Since the operator only applies

linear operations and maximization, it guarantees the same
relationship, l(b)  v̂(b)  u(b), to hold for all belief nodes
throughout the tree search.

When the tree search terminates, LeTS-Drive reports the
action with the best learned value at the root, which provides
the best long-term outcome, estimated by the search tree.

C. Performance Guarantee
The following theorem analyzes the convergence of the

uncertainty gap at the root b0, measured by the difference
between the upper and lower bound estimates, ✏(b0) = u(b0)�
l(b0), and discusses the regret bound of the reported optimal
policy ⇡̂⇤ at convergence:

Theorem 1. The proposed belief tree search algorithm using
learned heuristics is probabilistically and asymptotically opti-
mal. Suppose that the maximum planning time is unbounded.
The uncertainty gap at the root, ✏(b0), will converge to zero
in finite time. Let ⇡̂⇤ denote the policy tree reported by the
algorithm at convergence. Given any constant ⌧ 2 (0, 1), the
following relationship holds for the value of ⇡̂⇤ and the value
of the true optimal policy ⇡⇤, with probability at least 1� ⌧ :

V⇡̂⇤(b0) � V⇡⇤(b0)� ✏̂⇡⇤,⌧ (K). (10)

The approximation error ✏̂⇡⇤,⌧ (K) is the same regret bound
stated in Theorem 3.2 of [9], which approaches zero when
K ! 1, at a rate of O( 1p

K
), where K is the number of

sampled scenarios.

Proof. Convergence of the search is guaranteed by optimistic
trails, exploration paths that use the unbiased heuristics (Eqn.
7), which is brought forward from HyP-DESPOT [1] and
launched periodically in our planner. As shown in Theorem 1
of [1], optimistic trials always guarantee the uncertainty gap at
the tree root, ✏(b0) = u(b0)� l(b0), to monotonically decrease
and converge to zero with a finite number of trials, and the
guarantee holds regardless of what exploration mechanism is
deployed in other trials, in our case, Eqn. (8). This means the
proposed algorithm always converges in finite time. Since the
learned value at the root node b0 is bounded between l(b0) and
u(b0), it will converge to the optimal value under the sampled
scenarios. Namely, our planner will report the same optimal
policy as HyP-DESPOT when both algorithms converge.

Further, as shown in Theorem 3.2 of [9], given any constant
⌧ 2 (0, 1), the regret induced by the optimal HyP-DESPOT
policy, ⇡̂⇤, which considers only the sampled scenarios, with
respect to the true optimal policy, ⇡⇤, that considers all
possible scenarios, is bounded by ✏̂⇡⇤,⌧ (K) with probability
at least 1 � ⌧ . For a given POMDP problem, the regret
bound, ✏̂⇡⇤,⌧ (K), is determined by K, the number of sampled
scenarios. When increasing K to infinity, the bound converges
to zero at an asymptotic rate of O( 1p

K
). The regret bound

also decreases with the size of the optimal policy tree ⇡⇤,
meaning that if a simple near-optimal policy exists, the value
approximation will be particularly tight. We refer readers to
Theorem 3.2 of [9] for the detailed expression of Eqn. (10)
and a rigorous proof of the bound.

Finally, since our planner reports the same policy as HyP-
DESPOT at convergence, it provides the same regret bound.
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Fig. 3. Neural network architectures of the policy and value networks.

This concludes our proof that our planner is probabilistically
and asymptotically optimal.

VI. PLANNING-INFORMED LEARNING

The learner in LeTS-Drive uses the planner’s experiences
to update the policy network and the value network. This
section will discuss three possible designs of learners—open-
loop self-supervision, closed-loop self-supervision, and closed-
loop reinforcement. The learners share the same planner coun-
terpart, thus also correspond to three LeTS-Drive variants.
In the following, we will first present the neural network
architectures, and the collection of learning experience, then
present the three learner variants’ core ideas and algorithmic
details.

A. Policy and Value Networks
The architectures of the policy and value networks are

shown in Fig. 3 and described below. Input to the policy
and value networks are top-down rasterized images encoding
the state history xb at a belief b. The input consists of 5
channels. Channel 1�4 encode the geometry of traffic agents
at the current and three past frames; The 5th channel encodes
the lane graph of the urban map drawn as a set of poly-
lines. All images are registered to the local view of the ego-
vehicle for the corresponding time step. They are initially
rendered as 1024⇥1024 images and down-sampled to 64⇥64
using Gaussian pyramids [29] before inputting to the neural
networks.

The policy and value networks use a feature extractor
similar to that in [30]. The input images are processed by three
convolutional layers: an input layer with 32 8⇥8 kernels with
stride 4 and no padding; a middle layer with 64 4⇥ 4 kernels
with stride 2 and no padding; and the last layer with 64 3⇥ 3
kernels with stride 1 and no padding. The extractor outputs 64
8 ⇥ 8 images as hidden features. These features are flattened
and concatenated with the semantic inputs, i.e., velocities of
the ego-vehicle in the past four frames, and fed to the heads.

Our policy network only has one categorical head to output
the distribution over nine possible lane-decision / acceleration
combinations. The policy head has two fully-connected (FC)
layers mapping from the raw feature vector of length 4096
to an intermediate feature vector of length 512, then to 9

action probabilities. The value network, instead, has two heads
corresponding to the factored value function (Appendix A).
They include a mask head to output two binary masks for the
safe-driving and collision value factors, and a value head to
predict the non-zero numbers for the value factors. Both heads
have a single FC layer directly mapping the raw features to
factored predictions, which are combined to recover the actual
value prediction.

B. Data Collection
Data for learning are collected by the planner, through

acting in the environment. In each episode, the actor records a
trajectory. Each data point along the trajectory is represented
as (b, a, r, a⇤, v⇤), where b is the belief at the corresponding
time step, a is the executed action, and r is the reward fed
back by the environment after executing a; the data point also
records the planner’s estimation of the optimal action, a⇤, and
the optimal value, v⇤, at b. The action-value labels enable
self-supervised learning (Sections VI-C1 and VI-C2). The
rewards enable reinforcement learning (Section VI-C3). The
planner actor executes different a for different learners. For
self-supervised learning, we directly execute the optimal action
(a = a⇤); for reinforcement learning, we use a combination
of exploitative actors (a = a⇤), explorative actors (sample
a according to estimated action-values), and on-policy actors
(execute the learner policy) to collect experience. Collected
trajectories are processed into a pool of data points, either
stored in an offline dataset or fed to a fixed-capacity replay
buffer, for offline and online learners, respectively. Multiple
actors can execute asynchronously in separate simulator in-
stances, to collaboratively collect data.

C. Learners
Now we introduce the learner that uses experiences from

the planner to optimize the policy and value networks. We
propose the following learner variants, covering both open-
loop and close-loop integration of planning and learning, and
leveraging both self-supervised and reinforcement learning:

1) Open-loop self-supervised learning (Open-SSL): In
Open-SSL, the integration of planning and learning happens
in two phases: offline supervised learning and online guided
planning. In the offline phase, Open-SSL learns from a fixed
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planning expert; In the online phase, it plans with learned
heuristics. No further data is fed back to the learner during the
online stage. The planner and the learner are thus integrated
in an “open-loop”. This algorithm replicates the idea of our
earlier work [27] using the new planner with value clipping
(Section V) and the new POMDP and neural network models
(Section IV and VI-A).

Specifically, Open-SSL uses HyP-DESPOT [1] as the actor
to collect an offline dataset. Then, the learner trains the neural
networks by sampling the dataset. For each sampled belief
b, it fits the policy network to the action label, a⇤, and fits
the value network to the value label, v⇤, both provided by
HyP-DESPOT. It uses cross-entropy loss (CEL) for policy pre-
dictions and mean-square errors (MSE) for value predictions.
To facilitate value learning, we have further decomposed the
value loss into safe-driving and collision factors following the
factorization of the planner’s value function (Section IV-F).
Details of the loss functions are explained in Appendix B1.

At execution time, Open-SSL performs guided belief tree
search to synthesize real-time driving policies (Section V-B).
Open-SSL thus benefits from both local planning and global
learning. However, the limitation is that it cannot leverage new
data generated by the stronger, guided planner.

2) Closed-loop self-supervised learning (Closed-SSL):
Closed-SSL improves over Open-SSL by letting the learner
receive online experiences from the guided planner and con-
stantly feed updated heuristics back to the planner, thus closing
the planning-learning loop as shown in Fig. 2.

Closed-SSL uses the guided planner (Section V) as the
actor to collect data for learning. The planner uses the latest
policy and value network as heuristics. In each episode, the
planner collects a trajectory and feeds it to a fixed-capacity
replay buffer. In the meantime, the learner repeatedly samples
data from the replay buffer. For each sampled belief b, it
fits the policy network to the action label, a⇤, and the value
network to the value label, v⇤, both provided by the guided
planner (Fig. 2d). Policy and value learning also uses CEL and
MSE losses, respectively, where the value loss is factorized.
After every few updates, it feeds the new heuristics back
to the planner through a shared buffer. Closed-SSL learns
from scratch, starting from randomly initialized policy and
value networks and an empty replay buffer. Stable training
is achieved with the help of entropy regularization, which
enforces a desired level of entropy for the learned policies.
Details of the loss function and entropy regularization are
explained in Appendix B1.

Closed-SSL is essentially a form of self-supervised learning:
the planner provides labels to train its own sub-components
(the heuristics). Sample efficiency is achieved by using struc-
tured rewards (compiled as values) from the planner as learn-
ing signals, instead of unstructured (raw) rewards from the
environment.

Closed-SSL can also be viewed as generalized policy itera-
tion [31]: the belief tree search performs policy improvement
over the current policy; the learner then updates itself to fit the
improved policy. By iterating these two steps, the planner and
the learner can together converge to optimal policies defined
w.r.t the POMDP model.

The POMDP model is, however, an imperfect approxima-
tion to the actual environment. Since Closed-SSL plans using
the model and learns from policies and values generated with
the model, it can be sensitive to model errors (even though we
observe it working well in practice).

3) Closed-loop reinforcement learning (Closed-RL):
Closed-RL is thus proposed to hedge against model errors.
Closed-RL additionally uses policy gradient [32], [33], [34] to
let the policy network receive and learn from reward feedback
from the actual environment. By doing so, the learner policy
is optimized w.r.t. the true environment dynamics.

Closed-RL shares the same closed-loop architecture and
value learner as Closed-SSL. Differently, the policy learner
is not supervised by the planner’s actions. Instead, it learns
from the rewards fed back by the environment (Fig. 2e).
At each sampled belief b, Closed-RL reinforces the learner
policy by estimating its expected value from raw reward
signals along the trajectory, and differentiating the value to
compute gradients for updating the learner policy (“policy
gradient”). Closed-RL thus optimizes the learner policy for
its own expected value. The policy is thus unaffected by the
imperfection of planning models.

Closed-RL essentially uses the planner as an exploration
policy for reinforcement learning. However, the explored tra-
jectories are off-policy, i.e., not sampled from the distribution
induced by the learner policy, but from the distribution induced
by the guided planner. Such trajectories lead to biased value
estimates and policy gradients for the learner policy if not
properly corrected. Thus, we build our learner on top of a
popular off-policy policy gradient algorithm, soft actor-critic
(SAC) [35], to correctly train the learner policy using the
planner’s experience. Entropy regularization is also applied
here to assist training. Details of our SAC implementation are
presented in Appendix B2.

VII. EXPERIMENTS

In the experiments, we compare LeTS-Drive with online
POMDP planning, reinforcement learning, as well as open-
loop integration of planning and learning. We also provide
tests on the scalability and generalization of LeTS-Drive, and
analyzed the importance of new algorithmic components. We
tested all three variants of LeTS-Drive. Among them, Closed-
SSL and Closed-RL are our proposed approaches, and Open-
SSL serves as an open-loop integration baseline. For planning
and learning baselines, we use HyP-DESPOT to calibrate
the capability of existing POMDP planning tools, and use
imitation learning (the policy learner in Open-SSL) and policy
gradient using SAC [35] (labeled as PG) to calibrate the
capability of stand-alone policy learning. By comparing LeTS-
Drive with the existing algorithms that it is developed on top
of, we perform controlled experiments to clearly show the
benefit of integrating planning and learning for tackling short
planning time and limited data.

Our results show that the integration of planning and
learning enables LeTS-Drive to largely advance the capability
of both, greatly improving the scalability of online planning
and the efficiency of learning. Closed-loop planning and
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(a) (b) (c)
Fig. 4. Performance of planner policies in LeTS-Drive compared with online POMDP planning using HyP-DESPOT. All LeTS-Drive variants achieve
significant improvements over POMDP planning. Closed-SSL and Closed-RL achieve the best sample efficiency and asymptotic performance.

(a) (b) (c)
Fig. 5. Performance of learner policies in LeTS-Drive, compared with policy gradient (PG) and imitation learning (Open-SSL). Closed-loop self-supervised
learning (Closed-SSL) produces the most effective learner policy.

learning further improves the sample efficiency and asymptotic
performance by a large margin. When using self-supervised
learning, LeTS-Drive produces the strongest learner policies;
when additionally using reinforcement learning, LeTS-Drive
achieves the best integrated performance. Value clipping ap-
plied in the search not only ensures theoretical guarantees,
but also improves the practical performance of LeTS-Drive.
After training, our planner can successfully drive a vehicle
through dense urban crowds with sophisticated combinations
of accelerations and maneuvers, and generalize to significantly
different environments. See the example driving clips in the
accompanying video or via this link: youtu.be/fIOkLHji3co.

A. Experimental Setup

We analyze our approach in SUMMIT [3], a real-time
simulator for massive mixed urban traffic. Given any world-
wide location supported by the OpenStreetMap [4], SUMMIT
automatically generates dense traffic on the map. It controls
exo-agents using GAMMA [5], a recent traffic motion model
validated on multiple real-world datasets. The model uses
velocity-obstacle-based optimization to perform local collision
avoidance. It is efficient, able to support real-time simulation
of many traffic agents. We train LeTS-Drive using random
crowds at the Meskel-Square intersection at Addis Ababa,
Ethiopia (Fig. 1) simulated in SUMMIT. Each instance of
urban crowd contains 110 active traffic agents, including
trucks, buses, cars, motorcycles, pedestrians, etc.. An episode
of experience consists of a few minutes of continuous driving
and ends when the vehicle exits the range of the map.

We measure the performance of planning and learning
algorithms using the average cumulative reward achieved over
episodes. We further measure the driving safety and efficiency
to provide a detailed view of performance. Driving safety is
measured as the near-miss rate over all time steps. A near-miss
is a close encounter event when the estimated time-to-collision
is shorter than a threshold, here set as 0.33s, which is a more
robust hazard indicator than collisions [36]. Driving efficiency
is characterized by the average driving speed, measured in
m/s.

We use the same planning setup for all planners and the
same learning setup for all online learners. A POMDP state
tracks a maximum of 20 exo-agents within 50 meters of
the ego-vehicle, corresponding to the rough attention range
of human drivers in dense traffic. Planners are allowed 0.3
seconds of maximum planning time at each step and execute
at a rate of 3Hz, which roughly reflects the human response
time. All learners use 3⇥105 data points. Training of Closed-
SSL, Closed-RL, and PG starts with an empty replay buffer,
and ends after receiving 3 ⇥ 105 unique data points. Since
the time for collecting a data point in real-time simulation
is fixed, the setup also leads to the same learning time,
which is approximately 20 hours when using three concurrent
actors and one learner on a single machine1. The Open-
SSL baseline consumes an offline dataset of size 3 ⇥ 105

and is trained till convergence. The reinforcement learner in
Closed-RL uses the same network architectures as PG. Policy

1The machine is a server with 4 RTX 2080 GPUs, an Intel(R) Core(TM)
i7-8750H CPU, and 256G RAM. Each of the actors and the learner uses one
GPU to query or train neural networks.

https://youtu.be/fIOkLHji3co
www.openstreetmap.org
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and value networks in all LeTS-Drive variants share the same
network architectures.

B. Planner Policies
Fig. 4 shows the learning curves of the planner policies of

LeTS-Drive and the performance of online POMDP planning
using HyP-DESPOT. The learning curves are generated by
periodically evaluating the planners in SUMMIT throughout
training, averaged over five random seeds. The main observa-
tions are as follows.

The integration with learned heuristics immediately brings
significant performance gain over HyP-DESPOT, even when
using the open-loop architecture (Open-SSL). The resulting
planner policy conducts more cautious driving, leading to
fewer near-misses.

By closing the planning-learning loop using self-supervision
(Closed-SSL), LeTS-Drive achieves superior sample effi-
ciency, outperforming open-loop integration with around one-
tenth of data, and achieving much higher asymptotic perfor-
mance. The resulting planner policy further reduces the near-
miss rate by a large margin.

Switching to the reinforcement learner (Closed-RL) fur-
ther improves the integrated performance, as the algorithm
additionally receives feedback from the actual environment.
Closed-RL brings the best sample efficiency, quickly achieving
the highest rewards among all planners during training.

We have observed similar learning patterns from the Closed-
SSL and Closed-RL planners. Both of them first learn to
reduce the near-miss rate by lowering the driving speed. Then,
they gradually increase the driving speed with the near-miss
rate maintained low. Both training curves have converged after
receiving 1.5 ⇥ 105 ⇠ 2 ⇥ 105 data points. At convergence,
they deliver a similar level of planning performance.

C. Learner Policies
Fig. 5 shows the learning curves of the learner policies

in LeTS-Drive and stand-alone policy learning approaches.
The curves are generated by periodically evaluating the policy
networks in SUMMIT throughout training.

We observe that policy gradient learners, which do not
perform explicit reasoning, struggle to learn an effective
policy for crowd-driving given the limited amount of data.
This is because the task conveys three distinct local-optima
behaviors: defensive driving, aggressive driving, and smart col-
lision avoidance (desired). Policy gradient (PG) acquires very
conservative driving behaviors, primarily learning to reduce
the near-miss rate, which is safe but inefficient. The learner
policy of Closed-RL acquires overly-aggressive behaviors,
mostly learning to increase the driving speed, which is efficient
but unsafe. This behavioral difference results primarily from
different experiences. The PG policy only learns from its own
driving experiences. It hardly foresees the benefit of gathering
speed due to frequent collision penalties. The Closed-RL pol-
icy learns from the planner’s experiences. It is incentivized to
gather speed by the positive rewards received. However, with
limited data, Closed-RL struggles to learn collision avoidance
sufficiently well.

TABLE I
GENERALIZATION OF TRAINED LETS-DRIVE PLANNER POLICIES OVER

NEW CROWD DISTRIBUTIONS IN THE TRAINING MAP. THE FIRST AND
SECOND COLUMNS SHOW THE IMPROVEMENT ON THE AVERAGE

CUMULATIVE REWARD COMPARED TO THE LEARNER POLICY AND
POMDP PLANNING USING HYP-DESPOT, RESPECTIVELY.

Reward
w.r.t. learner
(⇥103)

Reward
w.r.t POMDP
(⇥103)

Near-miss rate Average speed

HyP-DESPOT - 0.00 0.0100 3.53±0.000
Open-SSL +8.34 +1.54 0.0085 3.16±0.000
Closed-SSL +5.19 +4.03 0.0057 2.74±0.003
Closed-RL +35.97 +3.95 0.0066 3.00±0.005

TABLE II
GENERALIZATION OF TRAINED LETS-DRIVE PLANNER POLICIES OVER

NOVEL MAPS. THE FIRST AND SECOND COLUMNS SHOW THE
IMPROVEMENT ON THE AVERAGE CUMULATIVE REWARD COMPARED TO
THE LEARNER POLICY AND POMDP PLANNING USING HYP-DESPOT.

Reward
w.r.t. learner
(⇥103)

Reward
w.r.t. POMDP
(⇥103)

Near-miss rate Average speed

HyP-DESPOT - 0.00 0.0081 3.57 ± 0.026
Open-SSL +2.74 +2.65 0.0057 3.09 ± 0.000
Closed-SSL +13.2 +3.81 0.0049 2.74 ± 0.016
Closed-RL +46.4 +4.15 0.0052 3.03 ± 0.017
Closed-RL
(Retrain) +44.9 +4.20 0.0049 3.20 ± 0.020

In comparison, self-supervised learning (Closed-SSL) pro-
duces smart driving policies with both low near-miss rates
and desirable driving efficiency. The final learner policy has
matched the performance of HyP-DESPOT, showing the ef-
fectiveness of self-supervision in policy learning.

D. Scalability
We further provide in Fig. 6 a scalability test for the

LeTS-Drive (Closed-RL) planner and compare it with the
scalability of HyP-DESPOT. In the test, we gradually increase
the number of agents in the Meskel Square from 44 to
110, to construct planning problems of different scales and
complexities. The scalability of planners are evaluated using
their capability of handling the growing problem scale in
real-time. We observe LeTS-Drive consistently outperforming
HyP-DESPOT by searching smaller and shallower trees, when
using the same planning time of 0.3s. The performance gain
increases with the problem scale.

The problem scale of crowd-driving is determined by the
number of nearby agents a planner considers in a POMDP
state, here denoted as N . Increasing N leads to an exponential
growth of the state and observation spaces and a quadratic
growth of the complexity of the transition function. N in-
creases with the crowd size, as more agents fall within the
50-meter range of the ego-vehicle. Fig. 6a shows the number
that planners effectively considered in the experiments.

The growth of the problem scale leads to quickly decayed
real-time performance of HyP-DESPOT, as shown by the
declined reward (Fig. 6d), increased near-miss rate (Fig. 6e),
and sacrificed driving speed (Fig. 6f). In comparison, LeTS-
Drive always generates better policies by searching much
smaller and shallower trees. When the problem scale grows,
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(a) (b) (c)

(d) (e) (f)
Fig. 6. Scalability of LeTS-Drive planner (Closed-RL) with increasing number of agents in the crowd, compared with standard POMDP planning using
HyP-DESPOT).

(a) (b)
Fig. 7. Generalization over novel maps. Each map is populated with 110
traffic agents in our experiments. (a) Shanghai intersection. (b) Singapore
highway.

the tree size and search depth of LeTS-Drive remain almost
unaffected (Fig. 6bc). However, the benefit of integrating plan-
ning and learning increases. LeTS-Drive consistently achieves
higher cumulative rewards (Fig. 6d) and lower near-miss rates
(Fig. 6e), with a marginal compromise on the driving speed
(Fig. 6f). The denser the scene is, the more performance gain
LeTS-Drive brings, showing improved scalability of planning.

E. Generalization
We now inspect the generalization of LeTS-Drive.
1) Random test crowds: Table I shows the results for

evaluating the trained planner and learner policies with unseen
random crowds on the training map (Meskel intersection).
Numbers are calculated using more than 1000 test episodes.

The results are generally consistent with those during train-
ing, clearly showing the benefits of integrating planning and

learning from both directions. All LeTS-Drive planner policies
have drastically improved the rewards over HyP-DESPOT and
their learning counterparts. Close-loop integration (Closed-
SSL and Closed-RL) has achieved significantly higher rewards
than the open-loop (Open-SSL), generating planner policies
with the lowest near-miss rate and the highest rewards.

Closed-SSL and Closed-RL allow different trade-offs be-
tween exploitation and exploration, brought by the quality
and the entropy of the learner policy, respectively. Closed-
SSL learns the best with a low policy entropy, because the
entropy regularization objective often contradicts the imitation
objective. It thus learns a strong but less explorative policy,
which confidently guides the tree search towards high-quality
directions. Closed-RL learns more stably with high policy en-
tropy, due to the characteristics of policy gradient. It produces
a weaker but more explorative policy, with approximately
18% higher entropy, which encourages the search to explore
a wider set of sensible actions. As a result, we observe
in Table I that Closed-SSL benefits equally from explicit
planning and a strong learner policy, as shown by similar
reward improvements w.r.t. the learner and POMDP planning.
In contrast, Closed-RL improves over a much weaker learner
policy, achieving similar integrated performance as Closed-
SSL, with the help of exploration.

2) Novel test maps: We further test LeTS-Drive on two sig-
nificantly different maps: another intersection in Shanghai and
a highway in Singapore (Fig. 7). Results are shown in Table
II. Despite the extreme setup—training in a single intersection
and testing on different maps—all variants of LeTS-Drive
have successfully generalized to the new environments, almost
matching the performance of Closed-RL trained specifically
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(a) (b) (c)
Fig. 8. Performance of the Closed-RL planner policy with and without value clipping.

on the test maps, referred to as Closed-RL (Retrain) in Table
II. Among them, Closed-SSL and Closed-RL have achieved
the best generalized performance. Closed-loop planning and
learning brings the same level of benefits as in the training
map, delivering the safest planner policies with the highest
rewards.

F. The Effect of Value Clipping

Value clipping (Section V-B) is an important algorithmic
component that ensures the convergence of the guided belief
tree search. We now show its practical effects. Fig. 8 shows
the learning curves of LeTS-Drive with and without value
clipping. Without value clipping, the planner becomes overly
optimistic due to the misuse of approximate heuristics. It
seldom attempts to reduce the driving speed during train-
ing, thus inducing consistently higher near-miss rates. This
compromises the reward throughout training. In contrast, with
value clipping, LeTS-Drive becomes more cautious in driving,
maintaining significantly lower speeds during the initial course
of training. Afterward, the planner stably improves driving
efficiency and constantly achieves higher rewards. This shows,
besides maintaining theoretical guarantees, value clipping also
enables more stable and efficient training in practice.

VIII. CONCLUSION AND FUTURE WORK

We have presented the LeTS-Drive algorithm, which inte-
grates planning and learning by planning locally and learning
globally in a closed loop. LeTS-Drive flexibly takes advantage
of either self-supervised learning or reinforcement learning to
learn heuristics for online planning. Doing so, LeTS-Drive
scales up online decision making under uncertainty: it out-
performs planning or learning alone, or open-loop integration
of planning and learning. Simulation experiments also show
that LeTS-Drive exhibits sophisticated driving behaviors in
challenging urban traffic with large heterogeneous crowds.

One limitation of LeTS-Drive is potential model errors.
Closed-RL partially addresses the problem. It eliminates the
bias in policy learning, but not in value learning, which
still relies on self-supervision. Significant model errors may
lead to inaccuracy in learned values and compromise the
planner’s performance. Model learning, (e.g., [21]) alleviates
this issue. It is also possible to apply reinforcement learning,
e.g., temporal difference (TD) learning [37], to learn the values

directly, but it is undesirable, because of sample inefficiency.
Instead, we can refine value estimates through TD learning
after “warming up” through self-supervision.

The current crowd-driving model in LeTS-Drive can be
further improved, by incorporating comprehensive traffic rules,
social norms, etc.. With increased model complexity, we ex-
pect LeTS-Drive to provide even more significant performance
benefits through integrated planning and learning. There are
also other models for different driving settings that are inter-
esting to consider [38], [39], [40]. More importantly, there is
often a gap between the simulation and the real world for robot
systems. Further research is required to study the effect of this
gap on crucial issues, such as driving safety, as well as ways to
close this gap [41], [42], [43]. One may also perform human
experiments in simulation to test the real-life performance of
LeTS-Drive, by letting human control some or all simulated
exo-agents.

Finally, LeTS-Drive’s core algorithmic ideas are not specific
to crowd-driving, but applicable in general to many large-
scale, long-term planning tasks, such as object manipulation
in clutter, multi-agent coordination, etc.. We will explore these
exciting directions as our next step.
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APPENDIX

A. Factored reward model

The raw reward function described in Section IV-E is
sufficient for planning, but is problematic for value learning
due to the existence of rare but critical events, e.g., colliding
with others. Particularly, this reward function is smooth at
safe belief states, but can change dramatically at proximity
to the critical events. To facilitate value learning, we factor
our reward function, and consequently the value function, into
safe-driving rewards Rs and collision penalties Rc:

R = Rs +Rc (11)
Rs = Rv +Racc +Rchange (12)
Rc = Rcol (13)

where the speed penalty Rv , smoothness penalties Racc and
Rchange, and collision penalty Rcol are defined as in Sec-
tion IV-E.

To compute factored values from this reward function, we
simply need to record the safe factor Vs and collision factor
Vc separately during the backup process in the belief tree
search. Particularly, at a belief node b, the Bellman’s operator
is executed as:

a⇤ = argmax
a2A

8
<

:R(b, a) + �
X

z2Zb,a

p(z|b, a)V (b0)

9
=

; (14)

Vs(b) = Rs(b, a
⇤) + �

X

z2Zb,a⇤

p(z|b, a⇤)Vs(b
0) (15)

Vc(b) = Rc(b, a
⇤) + �

X

z2Zb,a⇤

p(z|b, a⇤)Vc(b
0) (16)

Eqn. (14) denotes the regular value backup process where the
best value is chosen according to the original value estimates
V . Then the factored values associated with this best action
a⇤ is backed-up to the parent (Eqn. (15-16)).

Factored values at the root node are extracted as supervision
labels for the learner. As the two factors are frequently zero,
we further decompose the extracted value labels to binary
masks and non-zero values before feeding to the learner:

V = 1|Vs 6=0 ⇤ V �
s

+ 1|Vc 6=0 ⇤ V �
c

(17)

where V �
s

and V �
s

are non-zero, negative values.

B. Loss functions for learners

1) Supervision loss: In self-supervised learners, the policy
network ⇡✓ and the value network v✓0 are trained separately
using supervised learning using action, mask, and value labels
output by the planner. Given a dataset D of size N , the loss
functions, l(✓, D) and l(✓0, D), measure the errors in action
and value predictions, respectively:

l(✓, D) = � 1

N

NX

i

log ⇡✓(a
i|xi

b
)� ↵H(⇡✓(·|xi

b
))(18)

l(✓0, D) = lmask(✓
0, D) + lvalue(✓

0, D) (19)

where

lmask(✓
0, D) =

1

N

NX

i

(ms(x
i

b
|✓0)� 1|V i

s 6=0)
2 (20)

+ (mc(x
i

b
|✓0)� 1|V i

c 6=0)
2

lvalue(✓
0, D) =

1

N

NX

i

(1|V i
s 6=0 ⇤ vs(xi

b
|✓0)� V i

s
)2

+ (1|V i
c 6=0 ⇤ vc(xi

b
|✓0)� V i

c
)2 (21)

Here, xi

b
is the history state in the ith data point; ai, V i

s
,

and V i

c
are the action and value labels obtained from the

planner; ms(xi

b
|✓0) and mc(xi

b
|✓0) are the mask predictions

from the value network; and vs(xi

b
|✓0) and vc(xi

b
|✓0) are the

value predictions from the value network.
Eqn. (18) represents the cross-entropy loss [44] of the output

policy w.r.t. to action labels (the first term) augmented with
entropy regularization for the policy itself (the second term).
The regularization factor ↵ is tuned online using gradient
descent to help maintain a given target entropy of the output
policy. This dynamic update rule of ↵ is borrowed from SAC
[34]. In our implementation, we set the target entropy to
be 0.98 log |A| (targeting at scattered distributions) initially,
and gradually anneal it to 0.65 log |A| (targeting at more
concentrated distributions). Eqn. (20) defines the prediction
loss of the binary masks applied on value factors. Finally,
Eqn. (21) defines the regression loss for the non-zero values.

2) Reinforcement loss: In the reinforcement learner, we use
SAC [34], an off-policy policy-gradient algorithm, to train the
policy network. Specifically, we use its discrete-action version
presented in [35]. The loss function of the policy learner is:

J(✓) = Exb⇠D

h
⇡✓ (xb)

T [↵ log (⇡✓ (xb))�Q� (xb)]
i
. (22)

Here, xb is a sampled history state from the replay buffer; ⇡✓

is the policy network; ↵ is a dynamically-tuned regularization
scalar controlling the target entropy of ⇡✓ (xb); and Q� is a
Q-network trained in a soft-Q learning manner, serving as a
differentiable surrogate objective. The Q-network shares the
same architecture as the policy network (Fig. 3), but without
the softmax applied to the output. Details of the discrete-action
SAC can be found in [35].

Note that for policy-gradient, we can not directly apply
the reward function described in Section IV-E because of the
scale and sparsity of collision penalties. Instead, we use the
following smooth reward function in SAC:

R = 0.05
v

vmax

� 0.0251lane 6=0 �
1

9t2
c

(23)

where the first term encourages efficient driving, the second
penalizes excessive lane changes, and the third term penalizes
proximity to collision events according to the time-to-collision,
tc, estimated using a constant-velocity prediction model.
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